Test de cycle de température IEEE1513 et test de congélation humide, test de chaleur et d'humidité 2Mesures:Les deux modules effectueront 200 cycles de température entre -40 °C et 60 °C ou 50 cycles de température entre -40 °C et 90 °C, comme spécifié dans la norme ASTM E1171-99.Note:ASTM E1171-01 : Méthode de test du module photoélectrique à la température et à l'humidité de la boucleL'humidité relative n'a pas besoin d'être contrôlée.La variation de température ne doit pas dépasser 100 ℃/heure.Le temps de séjour doit être d'au moins 10 minutes et les températures haute et basse doivent être dans les limites de ± 5 ℃Exigences:un. Le module sera inspecté pour déceler tout dommage ou dégradation évident après le test de cycle.b. Le module ne doit présenter aucune fissure ou déformation et le matériau d'étanchéité ne doit pas se délaminer.c. S'il y a un test sélectif de la fonction électrique, la puissance de sortie doit être de 90 % ou plus dans les mêmes conditions que de nombreux paramètres de base d'origine.Ajouté :IEEE1513-4.1.1 Représentant du module ou échantillon de test du récepteur, si la taille d'un module ou d'un récepteur complet est trop grande pour tenir dans une chambre d'essai environnemental existante, le représentant du module ou l'échantillon de test du récepteur peut être remplacé par un module ou un récepteur pleine taille.Ces échantillons de test doivent être spécialement assemblés avec un récepteur de remplacement, comme s'ils contenaient une chaîne de cellules connectées à un récepteur de taille normale, la chaîne de batteries doit être longue et inclure au moins deux diodes de dérivation, mais dans tous les cas, trois cellules sont relativement peu nombreuses. , qui résume l'inclusion des liens avec le terminal récepteur de remplacement, doit être le même que le module complet.Le récepteur de remplacement doit inclure des composants représentatifs des autres modules, y compris l'objectif/boîtier d'objectif, le récepteur/boîtier du récepteur, le segment arrière/l'objectif du segment arrière, le boîtier et le connecteur du récepteur. Les procédures A, B et C seront testées.Deux modules pleine grandeur doivent être utilisés pour la procédure de test d’exposition extérieure D.IEEE1513-5.8 Test de cycle de gel d'humidité Test de cycle de gel d'humiditéRécepteurBut:Déterminer si la pièce réceptrice est suffisante pour résister aux dommages dus à la corrosion et à la capacité de l'expansion de l'humidité à dilater les molécules du matériau. De plus, la vapeur d'eau gelée constitue la contrainte permettant de déterminer la cause de la défaillance.Procédure:Les échantillons après les cycles de température seront testés conformément au tableau 3 et seront soumis à un test de congélation humide à 85 ℃ et -40 ℃, une humidité de 85 % et 20 cycles. Selon ASTM E1171-99, l'extrémité réceptrice avec un grand volume doit se référer à 4.1.1Exigences:La partie réceptrice doit satisfaire aux exigences de 5.7. Sortez du réservoir environnemental dans les 2 à 4 heures et la partie réceptrice doit répondre aux exigences du test de fuite d'isolation haute tension (voir 5.4).moduleBut:Déterminer si le module a une capacité suffisante pour résister à la corrosion nocive ou à l'élargissement des différences de liaison des matériauxProcédure : Les deux modules seront soumis à des tests de congélation humide pendant 20 cycles, 4 ou 10 cycles à 85°C comme indiqué dans la norme ASTM E1171-99.Veuillez noter que la température maximale de 60 °C est inférieure à la section d'essai de congélation humide à l'extrémité de réception.Un test complet d'isolation haute tension (voir 5.4) sera effectué après un cycle de deux à quatre heures. Après l'essai d'isolation haute tension, l'essai de performances électriques décrit en 5.2 sera effectué. Dans les grands modules peuvent également être complétés, voir 4.1.1.Exigences:un. Le module vérifiera tout dommage ou dégradation évident après le test et l'enregistrera.b. Le module ne doit présenter aucune fissure, déformation ou corrosion grave. Il ne doit y avoir aucune couche de matériau d’étanchéité.c. Le module doit réussir le test d'isolation haute tension comme décrit dans IEEE1513-5.4.S'il y a un test sélectif de la fonction électrique, la puissance de sortie peut atteindre 90 % ou plus dans les mêmes conditions de nombreux paramètres de base d'origine.IEEE1513-5.10 Test de chaleur humide IEEE1513-5.10 Test de chaleur humideObjectif: Évaluer l'effet et la capacité de l'extrémité réceptrice à résister à l'infiltration d'humidité à long terme.Procédure: Le récepteur de test est testé dans une chambre de test environnemental avec une humidité relative de 85 % ± 5 % et 85 °C ± 2 °C comme décrit dans la norme ASTM E1171-99. Ce test doit être effectué en 1 000 heures, mais 60 heures supplémentaires peuvent être ajoutées pour effectuer un test de fuite d'isolation haute tension. La partie réceptrice peut être utilisée pour les tests.Exigences: L'extrémité réceptrice doit quitter la chambre d'essai de chaleur humide pendant 2 à 4 heures pour réussir le test de fuite d'isolation haute tension (voir 5.4) et réussir l'inspection visuelle (voir 5.1). S'il y a un test sélectif de la fonction électrique, la puissance de sortie doit être de 90 % ou plus dans les mêmes conditions que de nombreux paramètres de base d'origine.Procédures de test et d'inspection du module IEEE1513IEEE1513-5.1 Procédure d'inspection visuelleObjectif : Établir l'état visuel actuel afin que le destinataire puisse comparer s'il réussit chaque test et garantir qu'il répond aux exigences pour des tests ultérieurs.Test de performances électriques IEEE1513-5.2Objectif : Décrire les caractéristiques électriques du module de test et du récepteur et déterminer leur puissance crête de sortie.Test de continuité de terre IEEE1513-5.3Objectif : Vérifier la continuité électrique entre tous les composants conducteurs exposés et le module de mise à la terre.IEEE1513-5.4 Test d'isolation électrique (hi-po sec)Objectif : Garantir que l'isolation électrique entre le module de circuit et toute pièce conductrice de contact externe est suffisante pour empêcher la corrosion et garantir la sécurité des travailleurs.IEEE1513-5.5 Test de résistance à l'isolation humideObjectif : Vérifier que l'humidité ne peut pas pénétrer dans la partie électroniquement active de l'extrémité de réception, où elle pourrait provoquer de la corrosion, une défaillance de la terre ou identifier des risques pour la sécurité humaine.Test de pulvérisation d'eau IEEE1513-5.6Objectif : Le test de résistance à l'humidité sur le terrain (FWRT) évalue l'isolation électrique des modules de cellules solaires en fonction des conditions de fonctionnement humides. Ce test simule de fortes pluies ou de la rosée sur sa configuration et son câblage pour vérifier que l'humidité ne pénètre pas dans le circuit du réseau utilisé, ce qui pourrait augmenter la corrosivité, provoquer des pannes de terre et créer des risques de sécurité électrique pour le personnel ou l'équipement.Test de cycle thermique IEEE1513-5.7 (Test de cycle thermique)Objectif : Déterminer si l'extrémité réceptrice peut résister correctement à la défaillance causée par la différence de dilatation thermique des pièces et des matériaux de joint.Test de cycle de gel d'humidité IEEE1513-5.8Objectif : Déterminer si la pièce réceptrice est suffisamment résistante aux dommages causés par la corrosion et à la capacité de l'expansion de l'humidité à dilater les molécules du matériau. De plus, la vapeur d’eau gelée constitue la contrainte permettant de déterminer la cause de la défaillance.IEEE1513-5.9 Test de robustesse des terminaisonsObjectif : Pour garantir les fils et les connecteurs, appliquez des forces externes sur chaque pièce pour confirmer qu'elles sont suffisamment résistantes pour maintenir les procédures de manipulation normales.IEEE1513-5.10 Test de chaleur humide (Test de chaleur humide)Objectif : Évaluer l’effet et la capacité de l’extrémité réceptrice à résister à l’infiltration d’humidité à long terme. jeEEE1513-5.11 Essai d'impact de grêleObjectif : Déterminer si un composant, notamment le condenseur, peut survivre à la grêle. IEEE1513-5.12 Test thermique de diode de dérivation (Test thermique de diode de dérivation)Objectif : Évaluer la disponibilité d'une conception thermique suffisante et l'utilisation de diodes de dérivation avec une fiabilité relative à long terme pour limiter les effets néfastes de la diffusion du déplacement thermique des modules.Test d'endurance de point chaud IEEE1513-5.13 (test d'endurance de point chaud)Objectif : Évaluer la capacité des modules à résister aux changements de chaleur périodiques au fil du temps, généralement associés à des scénarios de défaillance tels que des puces cellulaires gravement fissurées ou mal adaptées, des défaillances de circuit ouvert en un seul point ou des ombres inégales (parties ombrées). jeEEE1513-5.14 Test d'exposition extérieure (Test d'exposition extérieure)Objectif : Afin d'évaluer de manière préliminaire la capacité du module à résister à l'exposition aux environnements extérieurs (y compris les rayons ultraviolets), l'efficacité réduite du produit peut ne pas être détectée par des tests en laboratoire.IEEE1513-5.15 Test d'endommagement du faisceau hors axeObjectif : S'assurer que toute partie du module est détruite en raison de la déviation du module du faisceau de rayonnement solaire concentré.
Que sont les dispositifs antidéflagrants à haute et basse température ?En raison de la particularité du produit testé, pendant le processus de test, le produit testé peut produire une grande quantité de gaz. à l'état de haute température ou de haute pression, qui pourrait prendre feu et exploser. Afin d'assurer la sécurité de la production, des dispositifs de protection préventive de sécurité peuvent être utilisés en option. Par conséquent, le chambre d'essai à haute et basse température doit ajouter des dispositifs spéciaux - des dispositifs antidéflagrants lors du test de ces produits spéciaux. Aujourd'hui, parlons de ce que sont les dispositifs antidéflagrants à haute et basse température.1. Orifice de décompressionLorsque l'air généré dans la chambre d'essai augmente et que la pression du gaz dans la chambre atteint un seuil, l'orifice de décompression s'ouvre automatiquement et libère la pression vers l'extérieur. Cette conception garantit que lorsque le système est en surpression, la pression peut être relâchée, empêchant ainsi le système de s'effondrer ou d'exploser. L'emplacement et le nombre d'orifices de décompression sont déterminés en fonction de la conception spécifique du système d'extinction d'incendie et des exigences d'application.2. Détecteur de fuméeLe détecteur de fumée réalise principalement la prévention des incendies en surveillant la concentration de fumée. Le capteur de fumée ionique est utilisé à l’intérieur du détecteur de fumée. Le capteur de fumée ionique est une sorte de capteur doté d’une technologie avancée et d’un fonctionnement stable et fiable. Lorsque la concentration de particules de fumée dans la chambre est supérieure au seuil, elle détectera et déclenchera une alarme pour rappeler à la production d'arrêter le fonctionnement et d'obtenir l'effet de prévention des incendies.3. Détecteur de gazUn détecteur de gaz est un instrument qui détecte la concentration d'un gaz. L'instrument convient aux endroits dangereux où existent des gaz combustibles ou toxiques et peut détecter en continu la teneur du gaz mesuré dans l'air dans la limite inférieure d'explosivité pendant une longue période. Le gaz se diffuse dans l'électrode de travail du capteur à travers l'arrière du film poreux, où le gaz est oxydé ou réduit. Cette réaction électrochimique provoque une modification du courant circulant dans le circuit externe, et la concentration de gaz peut être mesurée en mesurant l'ampleur du courant.4. Système d'évacuation des fuméesL’entrée d’air du ventilateur sous pression est directement reliée à l’air extérieur. Afin d'éviter que l'air extérieur ne soit pollué par les fumées, l'entrée d'air du ventilateur de soufflage ne doit pas être située au même niveau que la sortie d'air de la machine d'extraction. Une vanne d'air unidirectionnelle doit être installée sur le tuyau d'air de sortie ou d'entrée du ventilateur. Le système d'évacuation des fumées mécanique adopte un ventilateur d'évacuation des fumées pour l'air d'évacuation mécanique. Selon les informations pertinentes, un système d'évacuation mécanique des fumées bien conçu peut évacuer 80 % de la chaleur de l'incendie, de sorte que la température de la scène de l'incendie soit considérablement réduite et joue un rôle important dans la sécurité de l'évacuation du personnel et de l'incendie. lutte.5. Serrure électromagnétique et boucle de porte mécaniqueLa serrure électromagnétique utilise le principe électromagnétique pour réaliser la fixation du corps de la serrure, sans qu'il soit nécessaire d'utiliser une languette de verrouillage mécanique, de sorte que la serrure électromagnétique n'existe pas de possibilité d'endommagement mécanique de la languette de verrouillage ou de destruction forcée. La serrure électromagnétique a une résistance anti-impact élevée, lorsque la force d'impact externe agit sur le corps de la serrure, le corps de la serrure ne sera pas facilement détruit et certaines mesures de protection seront prises en cas d'explosion.6. Dispositif d'extinction automatique d'incendieLe dispositif d'extinction automatique d'incendie est principalement composé de quatre parties : détecteur (détecteur d'énergie thermique, détecteur de flamme, détecteur de fumée), extincteur (extincteur à dioxyde de carbone), alarme numérique de contrôle de température et module de communication. Grâce au module de communication numérique de l'appareil, les changements de température en temps réel, l'état de l'alarme et les informations sur l'extincteur dans la zone d'incendie peuvent être surveillés et contrôlés à distance, ce qui peut non seulement surveiller à distance les différents états du dispositif d'extinction automatique d'incendie, mais maîtrisez également les changements en temps réel dans la zone d'incendie, ce qui peut minimiser les pertes de vies et de biens lorsque l'incendie se produit.7. Indicateur et voyant d'avertissementCommuniquez l’état de l’équipement ou l’état de la transmission par des signaux visuels et acoustiques aux opérateurs de machines, aux techniciens, aux responsables de production et au personnel de l’usine.