bannière
Maison

Blog

Blog

  • How does the Lab Ultraviolet Light Test Chamber Reproduce Sun Exposure and Rain? How does the Lab Ultraviolet Light Test Chamber Reproduce Sun Exposure and Rain?
    Sep 10, 2025
    Lab Companion UV weathering test chamber is a professional device used to simulate and evaluate the resistance performance of materials under ultraviolet radiation and corresponding climatic conditions for testing outdoor products. Its core function lies in simulating the impact of ultraviolet rays on materials in the natural environment through artificially controlled ultraviolet irradiation, temperature and humidity changes, thereby conducting comprehensive and systematic tests on the durability, color stability and physical properties of materials. In recent years, with the development of technology and the continuous improvement of requirements for material performance, the application of UV weathering test chambers has become increasingly widespread, covering multiple fields such as plastics, coatings, and textiles. The Q8 system independently developed by Lab can simulate the damage caused by sunlight and rain, and complies with multiple international certification standards. It can be programmed to conduct continuous ultraviolet light and rain weather resistance tests 24 hours a day and 7 days a week. It only takes a few days or weeks to reproduce the damage that occurs outdoors in months or even years, including various phenomena such as color change and powdering. Meanwhile, the Q8/UV2/UV3 are equipped with a standard ultraviolet light detection system, which precisely controls the light intensity. Four sets of UV intensity sensors automatically adjust the energy of the lamp tubes based on the aging state to make compensation, significantly reducing the experimental time and ensuring the reproducibility of the system. To more realistically simulate the effects of rainwater scouring and cooling, the ultraviolet test chamber is also equipped with a spray system. The Q8/UV3 model is equipped with 12 sets of water spray devices to simulate mechanical corrosion caused by rainwater erosion. When the sample is heated to a high temperature by an ultraviolet lamp, it is sprayed with cold water to generate intense thermal contraction stress, simulating a sudden downpour in summer. The scouring effect of water flow can simulate the erosion of coatings, paints and other surfaces by rainwater, washing away the aged and decomposed substances on the surface and exposing new material layers to continue aging. A typical test loop is: Under the set irradiance and high temperature, 4 hours of ultraviolet light is used to simulate daytime sun exposure. With the lights off and high humidity maintained, 4 hours of condensation at night is simulated. During this process, short sprays can be inserted regularly to simulate rainfall. By intensifying and cycling these key environmental factors, the ultraviolet light test chamber can reproduce within days or weeks the aging damage that materials would take months or even years outdoors, thus being used for product quality control and durability assessment. However, this test is an accelerated experiment, and its results are correlated with those of real outdoor exposure, rather than being completely equivalent. Different materials and testing standards will select different types of lamp tubes, irradiance, temperatures, and cycle periods to obtain the most relevant prediction results.
    EN SAVOIR PLUS
  • How to Choose the Appropriate Cooling Method for Test Chambers?
    Sep 09, 2025
    Air cooling and water cooling are two mainstream heat dissipation methods in refrigeration equipment. The most fundamental difference between them lies in the different media they use to discharge the heat generated by the system into the external environment: air cooling relies on air, while water cooling relies on water. This core difference has given rise to numerous distinctions among them in terms of installation, usage, cost and applicable scenarios.   1. Air-cooled system The working principle of an air-cooling system is to force air flow through a fan, blowing it over its core heat dissipation component - the finned condenser, thereby carrying away the heat in the condenser and dissipating it into the surrounding air. Its installation is very simple and flexible. The equipment can operate simply by connecting to the power supply and does not require additional supporting facilities, thus having the lowest requirements for site renovation. This cooling performance is significantly affected by the ambient temperature. In hot summers or high-temperature environments with poor ventilation, due to the reduced temperature difference between the air and the condenser, the heat dissipation efficiency will drop markedly, resulting in a decline in the equipment's cooling capacity and an increase in operational energy consumption. Moreover, it will be accompanied by considerable fan noise during operation. Its initial investment is usually low, and daily maintenance is relatively simple. The main task is to regularly clean the dust on the condenser fins to ensure smooth ventilation. The main operating cost is electricity consumption. Air-cooled systems are highly suitable for small and medium-sized equipment, areas with abundant electricity but scarce water resources or inconvenient water access, laboratories with controllable environmental temperatures, as well as projects with limited budgets or those that prefer a simple and quick installation process.   2. Water-cooled system The working principle of a water-cooling system is to use circulating water flowing through a dedicated water-cooled condenser to absorb and carry away the heat of the system. The heated water flow is usually transported to the outdoor cooling tower for cooling and then recycled again. Its installation is complex and requires a complete set of external water systems, including cooling towers, water pumps, water pipe networks and water treatment devices. This not only fixes the installation location of the equipment, but also places high demands on site planning and infrastructure. The heat dissipation performance of the system is very stable and is basically not affected by changes in the external environmental temperature. Meanwhile, the operating noise near the equipment body is relatively low. Its initial investment is high. Besides electricity consumption, there are also other costs such as continuous water resource consumption during daily operation. The maintenance work is also more professional and complex, and it is necessary to prevent scale formation, corrosion and microbial growth. Water-cooled systems are mainly suitable for large, high-power industrial-grade equipment, workshops with high ambient temperatures or poor ventilation conditions, as well as situations where extremely high temperature stability and refrigeration efficiency are required.   Choosing between air cooling and water cooling is not about judging their absolute superiority or inferiority, but about finding the solution that best suits one's specific conditions. Decisions should be based on the following considerations: Firstly, large high-power equipment usually prefers water cooling to achieve stable performance. At the same time, the geographical climate of the laboratory (whether it is hot), water supply conditions, installation space and ventilation conditions need to be evaluated. Secondly, if a relatively low initial investment is valued, air cooling is a suitable choice. If the focus is on long-term operational energy efficiency and stability, and one does not mind the relatively high initial construction cost, then water cooling has more advantages. Finally, it is necessary to consider whether one has the professional ability to conduct regular maintenance on complex water systems.
    EN SAVOIR PLUS
  • Working Principle of Lab Companion Air-cooled Mechanical Compression Refrigeration Working Principle of Lab Companion Air-cooled Mechanical Compression Refrigeration
    Sep 06, 2025
    1.Compression The low-temperature and low-pressure gaseous refrigerant flows out of the evaporator and is sucked in by the compressor. The compressor does work on this part of the gas (consuming electrical energy) and compresses it violently. When the refrigerant turns into high-temperature and high-pressure superheated vapor, the temperature of the vapor is much higher than the ambient temperature, creating conditions for heat release to the outside. 2. Condensation The high-temperature and high-pressure refrigerant vapor enters the condenser (usually a finned tube heat exchanger composed of copper tubes and aluminum fins). The fan forces the ambient air to blow over the condenser fins. Subsequently, the refrigerant vapor releases heat to the flowing air in the condenser. Due to cooling, it gradually condenses from a gaseous state into a medium-temperature and high-pressure liquid. At this point, the heat is transferred from the refrigeration system to the outdoor environment. 3. Expansion The medium-temperature and high-pressure liquid refrigerant flows through a narrow channel through the throttling device, which serves to throttle and reduce pressure, similar to blocking the opening of a water pipe with a finger. When the pressure of the refrigerant drops suddenly, the temperature also drops sharply, turning into a low-temperature and low-pressure gas-liquid two-phase mixture (mist). 4. Evaporation The low-temperature and low-pressure gas-liquid mixture enters the evaporator, and another fan circulates the air inside the box through the cold evaporator fins. The refrigerant liquid absorbs the heat of the air flowing through the fins in the evaporator, rapidly evaporates and vaporizes, and reverts to a low-temperature and low-pressure gas. Due to the absorption of heat, the temperature of the air flowing through the evaporator drops significantly, thereby achieving the cooling of the test chamber.   Subsequently, this low-temperature and low-pressure gas is drawn into the compressor again, initiating the next cycle. In this way, the cycle repeats itself without end. The refrigeration system continuously "moves" the heat inside the box to the outside and dissipates the heat into the atmosphere through the fan.
    EN SAVOIR PLUS
  • High-temperature Oven Maintenance Guide High-temperature Oven Maintenance Guide
    Sep 05, 2025
    1. Daily Maintenance First, clean the interior of the box to remove any residual contaminants from the test (such as dust and sample debris) to prevent them from corroding the inner liner or contaminating subsequent test samples. After the box has completely cooled down, wipe the inner liner, shelves and inner walls with a dry soft cloth. Second, clean the exterior of the box to prevent dust from blocking the ventilation openings and affecting heat dissipation. Especially around the ventilation openings, make sure there is no dust accumulation. Thirdly, check whether the sealing strip of the box door is flat, free of cracks and deformation. Aging or damage to the sealing strip can lead to heat leakage and a decrease in temperature uniformity. Fourth, empty the chamber: Emptying the chamber after use can prevent irrelevant items from being stored in the box for a long time, which may cause contamination or accidents.   2.Regular Maintenance Please be sure to cut off the power supply before cleaning the heating element! Wait for the equipment to cool down completely. Open the rear cover plate and gently remove the dust on the surface of the electric heating tube and the air duct with a vacuum cleaner or a soft brush. Check and clean the fan/impeller. Dust accumulation on the fan can cause dynamic balance imbalance, seriously affecting the uniformity of temperature. Therefore, after the power is cut off, it is necessary to check whether there is any abnormal noise from the fan motor bearings and use a vacuum cleaner to clean the accumulated dust on the fan blades.  Electrical components shall be inspected by professional equipment administrators for any loose, charred or rusted marks on the power lines, circuit breakers, contactors and other terminal blocks. Tighten the loose terminals and replace the damaged parts to ensure the safety and reliability of the electrical connection. The accuracy of the temperature sensor can directly determine the success or failure of the test. It is recommended that every six months or once a year, a standard thermometer that has undergone metrological calibration be used to conduct multi-point comparison calibration of the working temperature range of the equipment. If deviations are detected, parameter corrections or sensor replacements should be made in the control system. Clean the humidity system. If your device has a humidity function, you also need to clean the humidification water pan regularly, replace the wet cloth to prevent the growth of scale and algae, and use deionized water or purified water to reduce scale.   3. Long-term Maintenance after discontinuation First, thoroughly clean the inside and outside of the box, and then completely cover the equipment with a dust cover. Secondly, it is recommended to power on and run the equipment for half an hour to one hour without load once a month. This can remove the moisture inside the box, keep the electrical components active, prevent them from being damaged by moisture, and lubricate the mechanical parts. Finally, during non-power-on periods, it is recommended to completely cut off the main power supply to ensure safety and save standby power consumption.   Please always keep in mind that safety comes first in the above operations. By implementing a systematic maintenance plan, you can extend the service life of the high-temperature oven, ensure the accuracy and repeatability of the test data, and reduce the frequency of equipment failures and maintenance costs.
    EN SAVOIR PLUS
  • Lab Companion Vacuum Oven Working Principle Lab Companion Vacuum Oven Working Principle
    Sep 02, 2025
    Lab Companion vacuum oven is a precision device that dries materials under low-pressure conditions. Its working principle is based on a core scientific principle: in a vacuum state, the boiling point of a liquid will significantly decrease. Its working process can be divided into three key links:   1. Vacuum creation: By continuously extracting air from the oven chamber through a vacuum pump set, the internal environment is reduced to a level far below atmospheric pressure (typically up to 10Pa or even higher vacuum degrees). This move achieves two purposes: First, it greatly reduces the oxygen content in the cavity, preventing the material from oxidizing during the heating process; The second is to create conditions for the core physical process: low-temperature boiling. 2. Heating provides energy: At the same time as the vacuum environment is established, the heating system (usually using electric heating wires or heating plates) starts to work, providing thermal energy for the materials inside the chamber. Due to the extremely low internal pressure, the boiling points of the moisture or other solvents contained in the material drop sharply. For instance, at a vacuum degree of -0.085MPa, the boiling point of water can be reduced to approximately 45℃. This means that the material does not need to be heated to the conventional 100℃, and the internal moisture can vaporize rapidly at a lower temperature. 3. Steam removal: The water vapor or other solvent vapors produced by vaporization will be released from the surface and interior of the material. Due to the pressure difference within the cavity, these vapors will rapidly diffuse and be continuously drawn away by the vacuum pump, then discharged into the external environment. This process is ongoing continuously, ensuring the maintenance of a dry environment and preventing steam from re-condensing within the cavity, thereby driving the drying reaction to proceed continuously and efficiently towards dehydration.   The "low-temperature and high-efficiency drying" feature of vacuum ovens makes them widely used in the fields of pharmaceuticals, chemicals, electronics, food, and materials science, especially suitable for processing precious, sensitive or difficult-to-dry materials by conventional methods.
    EN SAVOIR PLUS
  • Application des chambres d'essai à haute et basse température dans la recherche de nouveaux matériaux énergétiques Application des chambres d'essai à haute et basse température dans la recherche de nouveaux matériaux énergétiques
    Aug 30, 2025
    1. Batteries lithium-ion : des tests à haute et basse température sont effectués à toutes les étapes de R&D des batteries lithium-ion, des matériaux aux cellules jusqu'aux modules. 2. Niveau matériel : Évaluer les propriétés physiques et chimiques de base des matériaux de base tels que les matériaux d'électrodes positives et négatives, les électrolytes et les séparateurs à différentes températures. Par exemple, tester le risque de lithium des matériaux d'anode à basse température ou examiner le taux de retrait thermique (MSDS) des séparateurs à haute température. 3. Niveau cellule : simuler un hiver froid en zone glaciale (par exemple, entre -40 °C et -20 °C), tester le démarrage à basse température, la capacité de décharge et les performances de la batterie, et fournir des données pour améliorer les performances à basse température. Des tests cycliques de charge et de décharge sont effectués à haute température (par exemple, 45 °C et 60 °C) pour accélérer le vieillissement et prédire la durée de vie à long terme et le taux de rétention de capacité de la batterie. 4. Piles à combustible : Les piles à combustible à membrane échangeuse de protons (PEMFC) sont soumises à des exigences extrêmement strictes en matière de gestion de l'eau et de la chaleur. La capacité de démarrage à froid constitue un obstacle technique majeur à la commercialisation des piles à combustible. La chambre d'essai simule un environnement sous le point de congélation (par exemple -30 °C) afin de tester la capacité de démarrage du système après congélation et d'étudier les dommages mécaniques causés par les cristaux de glace à la couche catalytique et à la membrane échangeuse de protons. 5. Matériaux photovoltaïques : Les panneaux solaires doivent fonctionner en extérieur pendant plus de 25 ans, résistant aux rudes conditions climatiques, jour et nuit, ainsi qu'aux quatre saisons. En simulant les écarts de température entre le jour et la nuit (par exemple, 200 cycles de -40 °C à 85 °C), la fatigue thermique des soudures d'interconnexion des cellules de batterie, le vieillissement et le jaunissement des matériaux d'encapsulation (EVA/POE) et la fiabilité de l'assemblage entre différents matériaux laminés peuvent être testés afin de prévenir le délaminage et les défaillances.   Chambres d'essai modernes à haute et basse température Il ne s'agit plus de simples enceintes de changement de température, mais de plateformes d'essai intelligentes intégrant de multiples fonctions. Cette enceinte d'essai avancée est équipée de fenêtres d'observation et de trous d'essai, permettant aux chercheurs de surveiller les échantillons en temps réel lors des variations de température.
    EN SAVOIR PLUS
  • Système de test fonctionnel et de vieillissement à haute et basse température refroidi par eau OVEN-256-10W
    Aug 20, 2025
    FOUR-256-10W est un système de test haute densité conçu pour répondre aux exigences rigoureuses des tests de performance des SSD NVMe, capable de tester simultanément jusqu'à 256 disques. Il fonctionne sur une plage de températures allant de -10 °C à 85 °C et prend en charge la dernière interface PCIe Gen5 x4 ainsi que la spécification du protocole NVMe Ver2.0. Chaque emplacement de test dispose d'un contrôle indépendant de la tension d'alimentation du SSD, avec une marge de tension de 0 V à 14,5 V. S'appuyant sur un cadre éprouvé pour les tests de production de SSD, le système offre une prise en charge complète des tests pilotes de R&D (EVT, DVT et PVT), ainsi que des tests de qualité et de fiabilité en production de masse (MP, ORT et ODT). Son utilisation intuitive et sa configuration très flexible améliorent considérablement l'efficacité de la production et la qualité du produit final dans la fabrication de SSD. Caractéristiques du produitPlage de contrôle de température : -10°C à 85°C ;Taux de variation de température : 1°C par minute ;Prend en charge PCIe Gen5 x4 ;La tension d'alimentation de chaque port de test peut être contrôlée via une programmation de script, avec une plage réglable de 0,6 V à 14,5 V et une précision de contrôle de 1 mV ;Compatible avec le dernier protocole NVMe Ver2.0 et prend en charge les commandes NVMe définies par l'utilisateur ;Bibliothèque de scripts étendue et système d'analyse de base de données puissant ;Le logiciel LTWolf prend en charge des fonctionnalités personnalisées supplémentaires en fonction des exigences du client ;Intégration transparente avec les systèmes MES des clients, avec personnalisation facultative pour les systèmes de gestion des données de production ;La conception de la protection du pare-feu garantit une isolation complète entre les circuits de test et les dispositifs testés (DUT) ;Algorithmes de test complets et éprouvés, notamment EVT, DVT, RDT, TVM et plus encore.
    EN SAVOIR PLUS
  • Normes de livraison pour les produits d'accompagnement de laboratoire
    Aug 07, 2025
    Considérations clés pour la remise de l'équipement afin de garantir un fonctionnement correct sur site :1. Installation et mise en service de l'équipementNotre entreprise supervise le transport et le raccordement électrique des équipements, garantissant ainsi leur bon fonctionnement sur le site du client. Toutes les installations sont strictement conformes aux critères d'acceptation standard. chambres d'essai environnementalesNous effectuons régulièrement des inspections par des tiers afin de garantir le respect permanent des normes du secteur. Si le client souhaite obtenir un rapport d'inspection après réception, nous pouvons faire appel à un organisme tiers accrédité pour effectuer des tests sur site. 2. Système de formation technique client2.1 Formation aux opérations de baseLa formation couvre les procédures de démarrage et d'arrêt des équipements, la configuration des programmes de test et les protocoles de maintenance de routine. Selon le secteur d'activité de l'utilisateur (par exemple, organismes de test tiers, constructeurs automobiles), le programme de formation est personnalisé pour s'adapter à des scénarios opérationnels spécifiques. 2.2 Formation à la maintenance avancéeCe programme se concentre sur le développement des capacités de dépannage et de réparation des utilisateurs, y compris le diagnostic des pannes du système d'humidité. chambres d'essai de température et d'humiditéLa formation comprend les procédures de remplacement des composants clés et les précautions à prendre pour établir un système de compétences de maintenance indépendant. 3. Protocole de service d'assistance technique3.1 Mécanisme de réponse d'urgenceUn processus standardisé de réponse aux pannes garantit que l'assistance technique est déclenchée dans les deux heures suivant la réception d'une demande de service. Les pannes courantes sont résolues dans les 48 heures (avec des solutions alternatives négociées pour les régions éloignées). 3.2 Assistance technique à distanceEquipé d'un système de diagnostic à distance professionnel, d'une communication vidéo en temps réel ou d'un accès logiciel dédié permet une identification rapide des défauts. 4. Fourniture de pièces de rechange et assurance de maintenance4.1 Plan de gestion des pièces de rechangeAfin d'améliorer le service après-vente, nous mettons en place des entrepôts de pièces détachées dédiés aux gros acheteurs et aux clients réguliers, permettant ainsi une réponse rapide aux besoins de service. Chaque client se voit attribuer un profil dédié afin d'optimiser l'allocation des ressources.Les canaux d'approvisionnement prioritaires sont réservés aux partenaires clés (par exemple, CRCC, CETC), garantissant une livraison accélérée des pièces de rechange pour minimiser les temps d'arrêt des équipements. 4.2 Politique de service de maintenanceLes réparations sont gratuites pour les pannes non causées par l'homme pendant la période de garantie. Les services de maintenance hors garantie suivent une tarification transparente, avec des plans de réparation détaillés et des devis fournis à l'avance.Notre entreprise dispose d'une équipe de maintenance après-vente professionnelle et s'engage à améliorer continuellement l'expertise technique de son personnel. Nous prévoyons de pouvoir prochainement proposer une assistance sur site à nos clients internationaux.
    EN SAVOIR PLUS
  • Application des débitmètres de température Application des débitmètres de température
    Jul 09, 2025
    Un débitmètre de température est un instrument de précision utilisé pour mesurer le débit et la température des gaz. Il est largement utilisé dans la surveillance environnementale, les systèmes de climatisation, la fabrication industrielle et les domaines connexes. Son principe fondamental consiste à détecter les variations de température causées par le débit de gaz afin de calculer avec précision la vitesse et le volume du flux d'air, fournissant ainsi aux utilisateurs des données précises. Ses principales caractéristiques résident dans sa haute précision et sa réactivité. Généralement équipé de capteurs avancés, il peut capturer rapidement les variations infimes de débit et fournir un retour d'information en temps réel. Sa précision de mesure reste exceptionnelle, même dans des conditions environnementales complexes, ce qui est particulièrement crucial pour les applications industrielles nécessitant un contrôle strict du débit d'air et de la température. De plus, son utilisation est relativement simple : une configuration de base suffit pour obtenir les données requises. Cette conception conviviale facilite son utilisation, tant pour les professionnels que pour les utilisateurs ordinaires. De nombreux modèles modernes sont également dotés d'écrans numériques avec des interfaces intuitives, permettant aux utilisateurs de comprendre rapidement l'état actuel et d'améliorer la convivialité. L'instrument fait preuve d'une excellente stabilité, maintenant des mesures constantes sur de longues périodes sans dérive significative, garantissant ainsi la fiabilité des données. Grâce aux progrès technologiques constants, de nombreux appareils intègrent désormais des fonctions de stockage et de transmission de données, permettant aux utilisateurs de consulter et d'analyser les données historiques après les tests pour une prise de décision éclairée. En conclusion, l'anémomètre thermique est devenu un outil indispensable dans de nombreux secteurs grâce à sa haute précision, sa réactivité, sa convivialité et son excellente stabilité. Au quotidien comme en milieu professionnel, la maîtrise de cet instrument améliore non seulement l'efficacité au travail, mais constitue également un atout essentiel pour la recherche scientifique et les applications techniques. Technologie de mesure essentielle dans la science moderne, il joue un rôle essentiel dans le progrès technologique.
    EN SAVOIR PLUS
  • Sélection du site d'installation de la chambre d'essai à changement rapide de température Sélection du site d'installation de la chambre d'essai à changement rapide de température
    Jun 27, 2025
    Sélection du site d'installation de la chambre d'essai à changement rapide de température :La distance par rapport au mur adjacent permet à la chambre d'essai climatique de jouer pleinement son rôle et ses caractéristiques. Une température à long terme de 15 à 45 °C et une humidité relative supérieure à 86 % doivent être sélectionnées.La température de travail du site d'installation ne doit pas changer de manière significative. Il doit être installé sur une surface de nivellement (utilisez un niveau pour déterminer le niveau sur la route lors de l'installation).Il doit être installé dans un endroit sans exposition au soleil. Il doit être installé dans un endroit avec une excellente ventilation naturelle.Il doit être installé dans des zones où les matériaux inflammables, les produits explosifs et les sources de chaleur à haute température sont éliminés.Il doit être installé dans un endroit avec moins de poussière.Installez-le le plus près possible de l'alimentation à découpage du système d'alimentation.
    EN SAVOIR PLUS
  • Que dois-je faire si la chambre d’essai à haute et basse température présente des problèmes ? Que dois-je faire si la chambre d’essai à haute et basse température présente des problèmes ?
    Jun 23, 2025
    Chambre d'essai à haute et basse température peut rencontrer une variété de problèmes dans le processus d'utilisation, voici un résumé des défauts potentiels et de leurs causes sous différents angles :1. Défaillance du système centralTempérature hors de contrôleMotif : les paramètres de contrôle PID sont déséquilibrés, la température ambiante dépasse la plage de conception de l'équipement, interférence de température multizone.Cas : Dans un atelier à environnement spécial, la température extérieure élevée provoque une surcharge du système de réfrigération, entraînant une dérive de température.L'humidité est anormaleRaison : la mauvaise qualité de l'eau d'humidification entraîne l'entartrage et le blocage des buses, la défaillance de la feuille piézoélectrique de l'humidificateur à ultrasons et la régénération incomplète du dessiccant de déshumidification.Phénomène particulier : une condensation inverse se produit lors d'un test d'humidité élevée, ce qui fait que l'humidité réelle dans la boîte est inférieure à la valeur définie.2. Problèmes mécaniques et structurelsLe flux d'air est désorganiséPerformance : Il y a un gradient de température de plus de 3℃ dans la zone d'échantillon.Cause première : le support d'échantillons personnalisé a modifié le conduit d'air de conception d'origine et l'accumulation de saleté sur la pale du ventilateur centrifuge a entraîné la destruction de l'équilibre dynamique. défaillance d'étanchéitéNouvelle défaillance : la force magnétique de la porte d'étanchéité électromagnétique diminue à basse température et la bande d'étanchéité en silicone devient cassante et se fissure après -70℃.3. Système électrique et de contrôlePanne de contrôle intelligentNiveau logiciel : après la mise à niveau du micrologiciel, l'erreur de réglage de la zone morte de température se produit et le dépassement des données historiques provoque le blocage du programme.Niveau matériel : la panne du relais statique SSR provoque un échauffement continu et la communication du bus est soumise aux interférences électromagnétiques de l'onduleur.Vulnérabilités de protection de sécuritéDangers cachés : la défaillance synchrone du relais de protection de température triple et la fausse alarme provoquée par l'expiration de l'étalonnage du détecteur de réfrigérant.4. Les défis des conditions de travail particulièresChoc thermique spécifiqueProblème : conversion rapide de -40℃ à +150℃ de la fissuration sous contrainte de la soudure de l'évaporateur, différence de coefficient de dilatation thermique entraînant la défaillance du joint de la fenêtre d'observation.Atténuation du fonctionnement à long termeDégradation des performances : après 2000 heures de fonctionnement continu, l'usure de la plaque de soupape du compresseur entraîne une diminution de 15 % de la capacité de réfrigération et une dérive de la valeur de résistance du tube chauffant en céramique.5. Impact environnemental et de maintenanceAdaptation des infrastructuresCas : L'oscillation de puissance du réchauffeur PTC provoquée par la fluctuation de la tension d'alimentation et l'effet de coup de bélier du système d'eau de refroidissement ont endommagé l'échangeur de chaleur à plaques.Angles morts de la maintenance préventiveLeçon : Ignorer la pression positive de la boîte entraîne l'entrée d'eau dans la chambre de palier et la croissance d'un biofilm et un blocage dans le tuyau d'évacuation des condensats.6. Points faibles des technologies émergentesNouvelle application de réfrigérantDéfis : problèmes de compatibilité de l'huile système après que le R448A ait remplacé le R404A et problèmes d'étanchéité à haute pression des systèmes de réfrigération au CO₂ sous-critique.Risques liés à l'intégration de l'IoTDéfaut : le protocole de contrôle à distance est attaqué de manière malveillante, ce qui entraîne une falsification du programme et une défaillance du stockage dans le cloud, entraînant la perte de la chaîne de preuves de test.Recommandations stratégiquesDiagnostic intelligent : configurez l'analyseur de vibrations pour prédire la défaillance du roulement du compresseur et utilisez un imageur thermique infrarouge pour scanner régulièrement les points de connexion électrique.Conception fiable : les composants clés tels que l'évaporateur sont fabriqués en acier inoxydable SUS316L pour améliorer la résistance à la corrosion, et des modules de contrôle de température redondants sont ajoutés au système de contrôle.Innovation en matière de maintenance : mettre en œuvre un plan de maintenance dynamique basé sur les heures de fonctionnement et établir un système annuel de test de pureté du fluide frigorigène.Les solutions à ces problèmes doivent être analysées en tenant compte du modèle spécifique de l'équipement, de l'environnement d'utilisation et de l'historique de maintenance. Il est recommandé de mettre en place un mécanisme de maintenance collaborative incluant le fabricant de l'équipement, les organismes de test tiers et les équipes techniques des utilisateurs. Pour les éléments de test clés, il est recommandé de configurer un système de secours à chaud sur deux machines afin d'assurer la continuité des tests.
    EN SAVOIR PLUS
  • Quelles sont les normes de livraison de Lab Companion ? Quelles sont les normes de livraison de Lab Companion ?
    Jun 23, 2025
    (1) Installation et mise en service des équipementsIntervention sur site : le personnel technique livrera gratuitement les marchandises et effectuera l'assemblage mécanique, le câblage électrique et la mise au point. Les paramètres de mise au point doivent respecter les conditions de température, d'humidité, de quantité de brouillard salin et autres paramètres définis dans l'accord technique du client.Critères d'acceptation : fournir un rapport de mesure tiers, et tout équipement non qualifié doit être retourné ou remplacé directement. Par exemple, le boîtier d'essai de pluie doit être accepté à 100 %.(2) Système de formation des clientsFormation opérationnelle : couvre le démarrage et l'arrêt de l'équipement, le réglage du programme et la maintenance quotidienne, personnalisée pour différents scénarios d'utilisation tels que les institutions d'inspection de la qualité et les entreprises automobiles.Formation à la maintenance approfondie : comprenant le diagnostic des pannes (comme le dépannage du système d'humidité dans la chambre d'essai à haute et basse température et humidité) et le remplacement des pièces de rechange pour améliorer la capacité de maintenance indépendante des clients.(3) Assistance technique et réponseRéponse instantanée : répondez à la demande de réparation dans les 15 minutes et résolvez les pannes courantes dans les 48 heures (négociez avec les zones éloignées).Diagnostic à distance : grâce au guidage vidéo ou au logiciel d'accès à distance, localisez rapidement le problème (comme une concentration anormale de poussière dans la chambre d'essai de sable).(4) Fourniture et maintenance de pièces de rechangeÉlaborez un plan de pièces de rechange, donnez la priorité à l'approvisionnement en pièces d'usure auprès des unités coopératives (telles que le Centre d'inspection et de certification des chemins de fer de Chine, le China Electronics Technology Group) et réduisez les temps d'arrêt.Les dommages non manuels sont gratuits pendant la période de garantie, et les services payants sont fournis après la période de garantie avec des frais transparents.
    EN SAVOIR PLUS
1 2 3 4 5 6 7 8 9 10 19 20
Un total de 20pages

laisser un message

laisser un message
Si vous êtes intéressé par nos produits et souhaitez en savoir plus, veuillez laisser un message ici, nous vous répondrons dès que possible.
soumettre

Maison

Des produits

WhatsApp

Contactez-nous