The core function of cooling in a test chamber is to dissipate heat and regulate temperature, ensuring stable operation of key components such as the compressor. The two common cooling methods are air cooling and water cooling , which differ significantly in heat transfer medium, application scenarios, advantages, and limitations. A detailed analysis is provided below.
I. Air Cooling
1. Core Principle
Heat is dissipated through air circulation. Fans drive ambient air flow to remove heat generated by the compressor and refrigeration system, using air directly as the cooling medium without additional media.
2.Application Conditions
Optimal cooling efficiency is achieved when the ambient operating temperature is maintained at “25±5℃”, the range where air heat exchange efficiency peaks.
3.Key Advantages
l Low maintenance cost & convenience: No auxiliary equipment required; only regular cleaning of fans and filters is needed, with no piping or cooling tower maintenance.
l Suitable for northern China climates: Northern regions have consistently low temperatures, easily meeting the 25±5℃ requirement for stable heat dissipation, making it the mainstream choice.
l Flexible installation: No complex piping; plug-and-use operation with no obstacles to relocation or site adjustment.
4.Main Disadvantages
l Highly ambient temperature-dependent: In high ambient temperatures (e.g., summer heat, enclosed spaces), air heat exchange efficiency drops sharply, severely reducing cooling performance.
l Impacts equipment lifespan: Compressors operate under high load in high temperatures, shortening service life with prolonged use.
l Slow cooling speed: Air has low specific heat capacity, resulting in lower heat transfer efficiency than water and slower cooling under identical conditions.
II. Water Cooling
1. Core Principle
Water serves as the cooling medium, leveraging its fluidity and high specific heat capacity. Circulating water absorbs heat from the refrigeration system, which is then released via external devices (cooling tower, chiller) for continuous heat dissipation.
2.Supporting Requirements
Requires additional installation of a cooling tower, water pump, dedicated circulation piping, or integration with a standalone chiller to form a complete water circulation cooling system.
3.Key Advantages
l Ambient temperature-independent : Stable heat dissipation regardless of high temperatures or enclosed spaces, with strong adaptability.
l High heat dissipation efficiency & fast cooling : Water’s far higher specific heat capacity enables rapid heat transfer and temperature reduction.
l Extended equipment lifespan : Compressors run efficiently under low load, significantly prolonging service life.
l Suitable for southern China climates : Southern regions experience hot, humid summers where air cooling is easily compromised, making water cooling the preferred option.
4.Main Disadvantages
l High upfront investment : Additional costs for purchasing cooling towers, pumps, pipes, and related installation and materials.
l Complex installation & relocation : Piping layout requires advance planning; fixed sites are difficult to relocate or modify.
l Ongoing maintenance needs : Regular water quality checks and pipe scale removal are necessary to prevent clogging and maintain circulation efficiency.
III. Core Summary of Air Cooling vs. Water Cooling
l Identical core purpose : Both methods cool test chambers by dissipating heat, differing only in cooling medium (air/water) and heat transfer path.
l No absolute superiority : Selection depends primarily on test site environment, climate conditions, and equipment configuration, not inherent merit.
l Critical selection rule : Air cooling is prohibited for compressors above 6HP ; water cooling is mandatory to ensure heat dissipation efficiency and equipment safety.
IV. Summary
In short, choose air cooling for low-temperature northern environments, low-power units, and ease of maintenance; select water cooling for high-temperature southern environments, high-power units, and high-efficiency heat dissipation.
For enterprises in manufacturing, electronic technology, and related industries, product reliability testing is a critical quality assurance link. However, the operational costs of environmental test chambers—core testing equipment—are often overlooked. Many businesses focus solely on testing precision during procurement, only to be troubled by high energy bills in long-term use. Our energy-saving environmental test chamber effectively resolves the conflict between "accurate testing" and "cost control," providing comprehensive support for product lifecycle cost management.
Core Energy-Saving Feature: Intelligent Refrigeration System Regulation
As the primary energy-consuming component of environmental test chambers, the energy regulation technology of the refrigeration system directly determines the equipment’s energy efficiency. On the premise of meeting core technical indicators, this test chamber innovatively integrates multiple energy adjustment measures to achieve intelligent dynamic control of refrigeration capacity.
The system precisely regulates evaporation temperature via the controller and links it with a hot gas bypass energy adjustment mechanism, matching refrigeration demand in real time based on the required cooling rate and target temperature range. When approaching the set low temperature, the system automatically reduces refrigeration capacity to avoid temperature overshoot—a common issue in traditional models—ensuring test stability. During the constant temperature phase, it abandons the energy-intensive "hot-cold balance" mode, optimizing energy utilization at the source. Verified in real operating conditions, the energy-saving effect reaches up to 30%, significantly reducing long-term operational costs, especially for enterprises requiring 24/7 continuous operation.
Precision & Energy Efficiency: Optimized Heating System Power Control
Refined control of the heating system further enhances the equipment’s energy-saving advantages and temperature control precision. The system adopts a synergistic control scheme of temperature controllers and thyristors: the temperature controller collects real-time temperature signals and issues control commands, while thyristors precisely adjust the heater’s power output.
When the temperature is far below the set value, thyristors deliver full power for rapid heating. As the temperature gradually approaches the set value, the output power decreases incrementally; once the target temperature is reached, power output stops immediately. This on-demand power distribution mode eliminates energy waste and ensures precise temperature control, providing a stable and reliable temperature environment for tests.
For example: When the internal temperature is significantly lower than the set value, thyristors operate at full power, and the heater runs at maximum load to ensure rapid temperature rise. As the temperature nears the target, the thyristor’s output power gradually decreases. Once the target temperature is achieved, the thyristor stops power output immediately, and the heater enters standby mode. This "on-demand power supply" mode eliminates the drawback of "frequent start-stop" in traditional heating systems—avoiding ineffective energy consumption while greatly improving temperature control precision, making it particularly suitable for test scenarios requiring high temperature stability.
Dual-System Synergy: Safeguard Enterprise Costs
From the refrigeration system’s intelligent energy adjustment to the heating system’s precision power control, our environmental test chamber centers on dual-system collaborative energy-saving technology. While ensuring accurate test data, it maximizes energy cost reduction. Choosing our test chamber not only guarantees product testing quality but also enables scientific management of enterprise operational costs, providing peace of mind throughout your product R&D and production processes.
In addition, if your enterprise is seeking a cost-effective environmental test chamber or struggling with high energy consumption from existing equipment, we recommend focusing on our energy-saving model. Let professional equipment protect your product quality while reducing costs and enhancing efficiency for your business.
I. Receipt Inspection
1. Physical Verification
Confirm equipment model, specifications, and serial number match the contract/packing list to avoid wrong delivery.
Inspect the cabinet, door, and control panel for transportation damage (dents, deformation) and ensure pipelines/wiring are intact without loosening.
2. Accessory & Document Check
Required accessories: Power cord, sample shelves, sealing rings, wrenches, and other tools (verify against the packing list).
Technical documents: Operation/maintenance manual, calibration certificate, warranty card, and qualification certificate (all mandatory for after-sales service).
3. Abnormal Handling
In case of damage or missing items: Immediately take photos (overall equipment, damaged details, packing list), notify the supplier within 24 hours to submit a claim, and sign the "Acceptance Objection Form" for documentation.
II. Installation & Deployment (Compliant Installation Ensures Performance)
1. Environment Requirements (Must Meet the Following)
Floor: Flat and sturdy, with load-bearing capacity ≥1.2 times the equipment weight (to avoid test errors caused by vibration).
Space: ≥30cm ventilation gap around the cabinet; keep away from heat sources, water sources, dust, and strong electromagnetic interference.
Power supply: Match the rated voltage (e.g., 380V three-phase five-wire/220V single-phase), grounding resistance ≤4Ω, and equip an independent air switch (power ≥1.2 times the equipment's rated power).
Environment: Room temperature 15-35℃, humidity ≤85%RH (no condensation); water-cooled models require pre-connected cooling water circuits meeting specifications.
2. Basic Installation Steps
Level the equipment: Adjust anchor bolts and use a level to confirm horizontal alignment (to prevent uneven stress on the refrigeration system).
Wiring inspection: Connect the power supply per the manual and ensure correct neutral/grounding connections (a common cause of electrical failures).
Consumable check: Confirm refrigerant and lubricating oil (if applicable) are properly filled with no leakage.
III. Commissioning (Core: Verify Performance Compliance)
1. First Startup Procedure
(1) Recheck power/pipeline connections before power-on; switch on after confirmation.
(2)Panel self-test: Ensure the display shows no error codes and buttons/indicators function normally.
(3)No-load operation (2-4 hours):
Set a common temperature range (e.g., -40℃~85℃) and monitor temperature fluctuation ≤±0.5℃ (meets industrial standards).
Check door sealing (no obvious air leakage), operating noise ≤75dB, and normal start/stop of refrigeration/heating systems.
2. Load Verification (Simulate Actual Usage)
Place a load equivalent to the test sample (weight/volume ≤80% of the equipment's rated load) without blocking air ducts.
Set the target temperature and holding time; record if the heating/cooling rate meets technical parameters (e.g., -40℃~85℃ heating time ≤60 minutes).
Alarm test: Simulate power failure, over-temperature, or door-open timeout to confirm timely alarm response (audio-visual alarm + shutdown protection).
IV. Emergency Handling & After-Sales Coordination
1. Common Fault Resolution
Error codes: Refer to the "Troubleshooting" section in the manual (e.g., E1=Over-temperature, E2=Power abnormality).
Sudden failures: (e.g., electric leakage, abnormal noise, refrigeration failure) Immediately cut off power, stop use, and contact the supplier's technical support (do not disassemble independently).
2. After-Sales Support
Retain the supplier's after-sales contact (phone + email) and confirm the warranty period (usually 1 year for the whole machine).
Maintenance records: Request a "Maintenance Report" after each service and file it for future tracing.
Chambre de test de température sans rendez-vous est un grand laboratoire qui admet l'opérateur pour y marcher, principalement utilisé pour les tests environnementaux. Il est couramment utilisé pour tester de grandes pièces, des produits semi-finis et des produits finis pour simuler les températures environnementales du monde réel, et est largement utilisé dans des industries telles que l'ingénierie électrique, les appareils électriques, les instruments, l'électronique, la sécurité, la communication, les capteurs, l'automatisation , Contrôle industriel, machinerie de précision, etc. La chambre de test de température sans rendez-vous est équipée d'un trou de test de 50 mm de 50 mm avec un bouchon sur le côté de la boîte. Le matériau du bouchon est un caoutchouc en silicone moussant faible, qui peut résister à des températures élevées et basse et a un effet d'isolation. Le radiateur adopte un radiateur électrique en fil de chrome nickel à cadre en porcelaine, qui a une faible inertie thermique et une longue durée de vie. L'instrument sort un signal PID de cycle de service d'impulsion contrôlable, qui est contrôlé par un relais à semi-conducteurs pour rendre le contrôle plus lisse et plus fiable.
Performances et caractéristiques de la chambre d'essai de température sans rendez-vous:
1.Il a une plage de contrôle de température et d'humidité extrêmement large, qui peut répondre à divers besoins pour les utilisateurs. En adoptant une méthode unique de contrôle de température et d'humidité équilibrée, un environnement de température et d'humidité sûr et précis peut être obtenu. Il a des performances de chauffage et d'humidification stables et équilibrées, peut atteindre la température de haute précision et le contrôle de l'humidité.
2. Équipé avec des régulateurs de température intelligents, la température et l'humidité sont affichées à l'aide de l'affichage numérique LED. La chambre d'essai de chaleur humide à haute et basse température peut être éventuellement équipée d'un enregistreur de température et d'humidité.
3. Sélection automatique du circuit de réfrigération, le dispositif de contrôle automatique a les performances de sélection et de fonctionnement automatiquement vers le circuit de réfrigération en fonction de la valeur définie de la température, de la réalisation du démarrage direct de la machine de réfrigération et du refroidissement direct dans des conditions à haute température.
4. La porte intérieure est équipée d'une grande fenêtre d'observation, ce qui facilite l'observation de l'état expérimental des échantillons de test.
5. Équipé de dispositifs de sécurité et de protection avancés - disjoncteur de courant résiduel, sur le protecteur de la température, protecteur de perte de phase et protecteur de coupure d'eau.
Nous pouvons les chambres d'essai à haute température et à basse température, les chambres d'essai à basse température, les chambres à température constante à température et à l'humidité, les chambres d'essai de chaleur humide à haute température et à basse température, les chambres d'essai de chaleur humide à haute température, les chambres d'essai de corrosion par pulvérisation de sel. Les chambres de test ci-dessus peuvent être personnalisées en fonction de vos exigences.
Par conséquent, la chambre d'essai de température sans rendez-vous convient aux entreprises à forte demande de tests environnementaux et d'espace opérationnel.