bannière
Maison

Chambre d'essai de température et d'humidité

Chambre d'essai de température et d'humidité

  • Rapid Temperature Change vs. Standard Chambers: Selection Guide & Cost Comparison Rapid Temperature Change vs. Standard Chambers: Selection Guide & Cost Comparison
    Jan 07, 2026
    High-low temperature test chambers are essential equipment in product reliability testing. However, many procurement managers struggle when choosing between standard models and rapid temperature change (RTC) models: What are the key differences? How much is the price gap? Which is more cost-effective for long-term use? This guide clarifies the core differences in performance, applications, and costs to help you make the right choice. I. Core Performance Differences: Beyond "Faster Heating/Cooling" The gap between the two is far more than just temperature rate—extending to structural design and testing capabilities. Comparison Dimension Standard High-Low Temperature Chamber Rapid Temperature Change Chamber Temperature Rate 0.7-1℃/min (standard), meeting basic testing needs 3-20℃/min (customizable), some models support linear heating/cooling Structural Design Single compressor + standard air duct, simple structure Dual-compressor cascade system + high-efficiency heat exchange module + impact-resistant structure, suitable for high-frequency temperature changes Temperature Control Precision Fluctuation ±0.5℃, uniformity ±2℃ Fluctuation ±0.3℃, uniformity ±1.5℃, no overshoot during temperature changes Core Testing Capability Complies with GB/T 2423 standard; suitable for steady-state high-low temperature storage and temperature resistance testing Simulates extreme rapid temperature change environments; supports accelerated aging testing, significantly shortening verification cycles     Standard chambers suffice for consumer electronics, small home appliances, etc. For new energy batteries, automotive components, aerospace, RTC chambers are a must—they accurately simulate severe temperature changes during transportation/use to expose product defects in advance. Example: An automotive parts enterprise reduced testing cycles from 3 months (standard chamber) to 1 month (RTC chamber), advancing product launch by 2 months. II. Cost Differences: Procurement, Operation & Maintenance RTC chambers are more expensive, but the specific cost gap and long-term expenses are detailed below: 1. Procurement Cost: 2-5x Higher, Driven by High-Quality Components For the same volume, RTC chambers cost 2-5x more than standard models. The gap stems from high-precision dual compressors, custom heating/cooling modules, and fatigue-resistant structural parts—all with higher R&D and production thresholds. 2. Operating Cost: Higher Power & Consumables RTC chambers consume 1.5-3x more power: A 100L standard chamber uses 5-8kW, while an RTC model uses 8-20kW. Electricity costs increase with usage frequency. RTC chambers also require special high-temperature heat transfer oil and eco-friendly refrigerants, with consumable costs twice that of standard models (which mainly use low-cost filters and sensor calibration). 3. Maintenance Cost: Complex Structure = Higher Requirements Standard chambers have simple structures and few wearing parts, with low annual maintenance costs (filter replacement, sensor calibration). RTC chambers require more frequent maintenance due to multiple core components and high precision; annual maintenance costs are 1.8-3x higher (e.g., dual compressor and precision control system overhauls). III. Selection Guide: Choose Based on Needs ✅ Choose Standard Chamber If: 1. You’re in consumer electronics, home appliances, toys, etc., and only need to meet GB/T 2423 standard 2. Budget is limited, pursuing cost-effectiveness, and testing frequency is low 1. Testing goals: Basic high-low temperature storage and temperature resistance verification ✅ Choose RTC Chamber If: 2. You’re in new energy, automotive, aerospace, needing to simulate extreme temperature changes • You want to shorten testing cycles and accelerate product launches • High testing requirements: Precise temperature rate control and no overshoot IV. Lab Companion: Customized Cost-Effective Solutions     As a professional test equipment manufacturer, Guangdong Hongzhan Technology offers cost-effective standard high-low temperature chambers and customizable RTC chambers (3-20℃/min) for new energy, automotive, and other industries with strict requirements.   Lab Companion provide not only equipment but also one-stop customized solutions based on your testing needs and budget—helping you clarify costs and select the right chamber for efficient, worry-free product reliability testing.   Contact us anytime for accurate quotes and customized selection plans tailored to your industry and needs!
    EN SAVOIR PLUS
  • Core 6 Factors for Rapid Temperature Change Chamber Selection Core 6 Factors for Rapid Temperature Change Chamber Selection
    Jan 06, 2026
    Core Logic: Match testing requirements, balance performance and full life-cycle cost, and avoid over-specification for under-utilization. I. Core Testing Requirements 1. Temperature Change Rate Clarify the loaded rate and deviation requirements (e.g., ≤±0.5℃/min), and match the application scenarios: l 5–10℃/min for consumer electronics l 10–20℃/min for automotive/aerospace industries 2. Temperature & Humidity Range Cover the specified testing standards: l -40~85℃ for new energy products l -55~125℃ for aerospace products Select models with 20%–98%RH range if humidity testing is required. 3. Sample Compatibility l The chamber volume should be ≥ 3 times the sample volume. l Dynamic load compensation is required for high-heat-capacity samples (e.g., metal components). II. Hardware Performance 1. Refrigeration System Prioritize dual-compressor cascade systems equipped with imported brands (Danfoss/Copeland) and eco-friendly refrigerants (R404A/R23). 2. Air Duct & Heating System Adopt scroll diversion + baffle design, with 0–100% linear adjustment of heating tubes. 3. Sensors Use imported PT1000 sensors with a sampling frequency of ≥ 10 times/second. III. Software Functions 1. Algorithm PID closed-loop control + adaptive temperature zone compensation, supporting custom rate curve setting. 2. Data Management Automatic data recording and export (Excel/CSV format), with support for remote control and multi-channel alarm. 3. Safety Features Over-temperature protection, compressor overload protection, water shortage protection, etc. Explosion-proof pressure relief devices are mandatory for flammable and explosive samples. IV. Full Life-Cycle Cost 1. Procurement Cost Select models based on actual needs; avoid blind pursuit of high rates (the price of 10℃/min models is 1.5–2 times that of 5℃/min models). 2. Operation Cost Prefer inverter compressors to reduce electricity consumption by 15%–20%. 3. Maintenance Cost Choose models with modular structure, and confirm annual free calibration services. V. Expandability & Compatibility Support post-purchase installation of humidity, explosion-proof, and data acquisition modules. Compatible with upper computers and testing fixtures for automated testing. VI. Manufacturer Services & Qualifications Provide customized solutions and loaded rate test reports. Ensure the equipment has passed ISO 9001 and CE certifications, complying with the GB/T 2423.22 standard. Ø Selection Case Testing Scenario: Automotive motor controller testing (8kg, AEC-Q100 standard) Recommended Model: 150L chamber with 10℃/min loaded rate, -40~125℃ temperature range, and explosion-proof function. Benefits: Balances testing requirements and cost, improving testing efficiency by 4 times.
    EN SAVOIR PLUS
  • Equipment Selection Guide: Ovens vs. Temperature Test Chambers Equipment Selection Guide: Ovens vs. Temperature Test Chambers
    Jan 04, 2026
        Equipment selection directly impacts efficiency, quality and data reliability. Standard ovens, precision ovens and temperature-humidity test chambers have distinct functional boundaries and application scenarios. Many enterprises suffer cost waste or functional insufficiency due to improper selection. This guide clarifies selection logic, breaks down matching schemes, avoids common pitfalls and provides precise guidance based on practical scenarios. 1. Core Selection Logic Adhere to the four-step framework of defining demand types → verifying temperature accuracy → supplementing environmental requirements → matching budget to clarify equipment selection boundaries. Step 1: Define Demand Types Choose oven series for process applications (drying, curing, etc.). Choose temperature-humidity test chambers for environmental reliability verification (extreme temperature variation, humidity exposure). Note: Ovens lack cooling function and cannot replace test chambers. Step 2: Verify Temperature Control Accuracy Standard ovens: Suitable for applications allowing ±5℃ temperature deviation. Precision ovens: Required for high-precision scenarios (±1℃ tolerance, e.g., electronic packaging, medical sterile drying). Temperature-humidity test chambers: Ideal for extreme environment testing, with accuracy up to ±1℃ (even ±0.5℃ for premium models). Step 3: Supplement Environmental Requirements Ovens: Applicable for ambient temperature heating only. Temperature-humidity test chambers (including humidity-controlled models): Necessary for low-temperature (-20℃ ~ -70℃), cyclic temperature variation or humidity control (e.g., 85℃/85%RH) applications. Note: Precision ovens do not support cooling or humidity control functions. Step 4: Match Budget Standard ovens (thousands of CNY): For basic drying tasks with limited budget. Precision ovens (10,000 ~ 100,000 CNY): For processes requiring high precision and stability. Temperature-humidity test chambers (100,000 ~ hundreds of thousands of CNY): For professional environmental testing; reserve budget for operation and maintenance. 2. Typical Application Scenarios: Demand-Equipment Matching This section breaks down matching schemes for three key sectors (electronics, automotive, medical & research) to provide intuitive references. Electronics Industry Simple component drying (±5℃ tolerance): Standard oven PCB solder paste curing (±0.5℃ accuracy, ±1℃ uniformity, multi-stage temperature control): Precision oven Chip cyclic testing (-40℃ ~ 125℃, data traceability required): Temperature-humidity test chamber Automotive Industry Basic part drying (±5℃ tolerance): Standard oven Sensor 24-hour aging test at 85℃ (±0.3℃ accuracy): Precision oven Battery pack rapid temperature cycling test (-40℃ ~ 85℃): Rapid temperature change test chamber Medical & Research Industry Routine consumable drying (±5℃ tolerance): Standard oven Syringe & catheter sterile drying (±0.5℃ accuracy, clean inner chamber, data traceability): Precision oven with 316 stainless steel enclosure Plastic material thermal stability study (-30℃ ~ 150℃): Temperature-humidity test chamber 3. Common Selection Pitfalls: Risk Avoidance Misconceptions often lead to wrong selections. Focus on avoiding these three key pitfalls: Pitfall 1: Using standard ovens instead of precision ovens Short-term cost reduction may cause higher product rejection rates and increased long-term costs. Solution: Always choose precision ovens for applications requiring ±1℃ accuracy; improved yield will offset the incremental cost. Pitfall 2: Using precision ovens for temperature cycling tests Ovens lack cooling capability, leading to test failure. Solution: Directly select temperature-humidity test chambers for low-temperature or cyclic temperature variation tests. Pitfall 3: Blindly pursuing high-spec test chambers Results in cost waste and underutilization of functions. Solution: Select equipment strictly based on actual test parameters to balance demand and budget. Conclusion The core of equipment selection lies in precise demand matching. Clarifying demand types and core parameters, combining scenario requirements with budget planning, and avoiding common pitfalls will maximize equipment value, support production quality improvement and boost R&D efficiency.
    EN SAVOIR PLUS
  • Une brève discussion sur l'utilisation et l'entretien d'une chambre d'essais environnementaux
    May 10, 2025
    Ⅰ. Utilisation appropriée de COMPAGNON DE LABORATOIRESInstrument deLes équipements d'essais environnementaux demeurent des instruments de précision et de grande valeur. Un fonctionnement et une utilisation corrects fournissent non seulement des données précises au personnel d'essai, mais garantissent également un fonctionnement normal à long terme et prolongent la durée de vie de l'équipement. Avant de réaliser des essais environnementaux, il est essentiel de se familiariser avec les performances des échantillons, les conditions, les procédures et les techniques d'essai. Une compréhension approfondie des spécifications techniques et de la structure de l'équipement d'essai, en particulier du fonctionnement et des fonctionnalités du contrôleur, est cruciale. Une lecture attentive du manuel d'utilisation de l'équipement permet d'éviter les dysfonctionnements causés par des erreurs de manipulation, susceptibles d'endommager les échantillons ou d'induire des données d'essai inexactes. Deuxièmement, sélectionnez l'équipement d'essai approprié. Pour garantir une exécution fluide, il convient de choisir l'équipement adapté aux caractéristiques des échantillons à tester. Un rapport raisonnable doit être maintenu entre le volume de l'échantillon et la capacité effective de la chambre d'essai. Pour les échantillons dissipant la chaleur, le volume ne doit pas dépasser un dixième de la capacité effective de la chambre. Pour les échantillons non chauffants, le volume ne doit pas dépasser un cinquième. Par exemple, un téléviseur couleur de 21 pouces soumis à des tests de stockage thermique peut parfaitement tenir dans une chambre de 1 m³, mais une chambre plus grande est nécessaire lorsque le téléviseur est sous tension en raison de la production de chaleur. Troisièmement, positionnez correctement les échantillons d'essai. Ils doivent être placés à au moins 10 cm des parois de la chambre. Plusieurs échantillons doivent être disposés sur le même plan autant que possible. Leur positionnement ne doit pas obstruer la sortie ou l'entrée d'air, et un espace suffisant doit être laissé autour des capteurs de température et d'humidité pour garantir des mesures précises. Quatrièmement, pour les tests nécessitant des milieux supplémentaires, le type approprié doit être ajouté conformément aux spécifications. Par exemple, l'eau utilisée dans chambres d'essai d'humidité Les tests d'humidité doivent répondre à des exigences spécifiques : la résistivité ne doit pas être inférieure à 500 Ω·m. L'eau du robinet a généralement une résistivité de 10 à 100 Ω·m, l'eau distillée de 100 à 10 000 Ω·m et l'eau déionisée de 10 000 à 100 000 Ω·m. Par conséquent, pour les tests d'humidité, il est impératif d'utiliser de l'eau distillée ou déionisée, et celle-ci doit être fraîche, car l'eau exposée à l'air absorbe le dioxyde de carbone et la poussière, ce qui réduit sa résistivité au fil du temps. L'eau purifiée disponible sur le marché constitue une alternative économique et pratique. Cinquièmement, l'utilisation correcte des enceintes d'essai d'humidité. La gaze ou le papier humide utilisé dans les enceintes d'essai d'humidité doit répondre à des normes spécifiques ; n'importe quelle gaze ne peut pas la remplacer. Les mesures d'humidité relative étant dérivées de la différence de température entre les thermomètres sec et humide (à proprement parler, également influencée par la pression atmosphérique et le flux d'air), la température humide dépend des taux d'absorption et d'évaporation d'eau, qui sont directement affectés par la qualité de la gaze. Les normes météorologiques exigent que la gaze humide soit une gaze spéciale en lin. Une gaze inadaptée peut entraîner un contrôle imprécis de l'humidité. De plus, la gaze doit être correctement installée : une longueur de 100 mm, enroulée étroitement autour de la sonde du capteur, la sonde étant positionnée à 25-30 mm au-dessus du réservoir d'eau, et la gaze immergée dans l'eau pour assurer un contrôle précis de l'humidité. Ⅱ. Maintenance des équipements d'essais environnementauxIl existe différents types d'équipements d'essais environnementaux, mais les plus couramment utilisés sont les enceintes à haute température, à basse température et à humidité. Récemment, les enceintes d'essai combinées température-humidité intégrant ces fonctions ont gagné en popularité. Plus complexes à réparer, elles constituent des exemples représentatifs. Nous abordons ci-dessous la structure, les dysfonctionnements courants et les méthodes de dépannage des enceintes d'essai température-humidité. (1) Structure des chambres d'essai de température et d'humidité courantesOutre le bon fonctionnement de l'équipement, le personnel d'essai doit comprendre sa structure. Une enceinte d'essai de température et d'humidité se compose d'un corps, d'un système de circulation d'air, d'un système de réfrigération, d'un système de chauffage et d'un système de contrôle de l'humidité. Le système de circulation d'air permet généralement de régler la direction du flux d'air. Le système d'humidification peut utiliser une chaudière ou une évaporation de surface. Le système de refroidissement et de déshumidification utilise un cycle de réfrigération par climatisation. Le système de chauffage peut utiliser des radiateurs électriques à ailettes ou un chauffage direct par fil résistif. Les méthodes de mesure de la température et de l'humidité comprennent les tests au thermomètre sec-humide ou les capteurs d'humidité directs. Les interfaces de contrôle et d'affichage peuvent être équipées de contrôleurs de température et d'humidité séparés ou combinés. (2) Dysfonctionnements courants et méthodes de dépannage pour Chambres d'essai de température et d'humidité1. Problèmes liés aux tests à haute température Si la température n'atteint pas la valeur définie, inspectez le système électrique pour identifier les défauts.Si la température augmente trop lentement, vérifiez le système de circulation d'air, en vous assurant que le registre est correctement réglé et que le moteur du ventilateur fonctionne.Si un dépassement de température se produit, recalibrez les paramètres PID.Si la température augmente de manière incontrôlable, le contrôleur peut être défectueux et nécessiter un remplacement. 2. Problèmes liés aux tests à basse température Si la température baisse trop lentement ou rebondit après avoir atteint un certain point : Assurez-vous que la chambre est pré-séchée avant le test. Vérifiez que les échantillons ne sont pas surchargés, ce qui obstrue la circulation de l’air. Si ces facteurs sont exclus, le système de réfrigération peut nécessiter un entretien professionnel.Le rebond de température est souvent dû à de mauvaises conditions ambiantes (par exemple, un espace libre insuffisant derrière la chambre ou une température ambiante élevée). 3. Problèmes de test d'humidité Si l’humidité atteint 100 % ou s’écarte considérablement de la cible : Pour une humidité de 100 % : Vérifiez que la gaze humide est sèche. Inspectez le niveau d'eau dans le réservoir du capteur humide et dans le système d'alimentation en eau automatique. Remplacez ou nettoyez la gaze durcie si nécessaire. En cas de faible humidité : vérifiez l'alimentation en eau et le niveau de la chaudière du système d'humidification. Si ces éléments sont normaux, le système de commande électrique peut nécessiter une réparation professionnelle. 4. Défauts d'urgence pendant le fonctionnement En cas de dysfonctionnement de l'équipement, le panneau de commande affiche un code d'erreur accompagné d'une alarme sonore. Les opérateurs peuvent consulter la section dépannage du manuel pour identifier le problème et faire appel à un professionnel pour une reprise rapide des tests. D'autres équipements d'essais environnementaux peuvent présenter des problèmes différents, qui doivent être analysés et résolus au cas par cas. Un entretien régulier est essentiel, notamment le nettoyage du condenseur, la lubrification des pièces mobiles et l'inspection des commandes électriques. Ces mesures sont indispensables pour garantir la longévité et la fiabilité des équipements.
    EN SAVOIR PLUS

laisser un message

laisser un message
Si vous êtes intéressé par nos produits et souhaitez en savoir plus, veuillez laisser un message ici, nous vous répondrons dès que possible.
soumettre

Maison

Des produits

WhatsApp

Contactez-nous