Double 85 Constant Temperature And Humidity Reliability Environmental Test (THB)
First, high temperature and humidity test
WHTOL (Wet High Temperature Operating Life) is a common environmental stress acceleration test, usually 85℃ and 85% relative humidity, which is generally carried out in accordance with the standard IEC 60068-2-67-2019. The test conditions are shown in the chart.
Second, the test principle
"Double 85 test" is one of the reliability environmental tests, mainly used for constant temperature and humidity box, that is, the temperature of the box is set to 85℃, the relative humidity is set to 85%RH conditions, to accelerate the aging of the test product. Although the test process is simple, the test is an important method to evaluate many characteristics of the test product, so it has become an indispensable reliability environmental test condition in various industries.
After aging the product under the condition of 85℃/85%RH, compare the performance changes of the product before and after aging, such as the photoelectric performance parameters of the lamp, the mechanical properties of the material, yellow index, etc., the smaller the difference, the better, so as to test the heat and moisture resistance of the product.
The product may have thermal failure when working in a continuous high temperature environment, and some moisture sensitive devices will fail in a high humidity environment. The dual 85 test can test the thermal stress generated by the product under high humidity and its ability to resist long-term moisture penetration. For example, the frequent failure of various products in the humid weather period in the south is mainly due to the poor temperature and humidity resistance of the products.
3. Experimental factors
In the LED lighting industry, many manufacturers have used the double 85 test results as an important means to judge the quality of lamps. Various possible reasons why LED lamps fail the dual 85 test are:
1. Lamp power supply: poor heat resistance of shell, danger of short circuit in circuit, failure of protection mechanism, etc.
2. Lamp structure: unreasonable design of heat dissipation body, installation problems, materials are not resistant to high temperature.
3. Lamp light source: poor moisture resistance, packaging adhesive aging, high temperature resistance.
If you encounter a special use environment, such as the working environment temperature is severe, you need to test its high and low temperature resistance, the test method can refer to the high and low temperature test project.
4. Serve customers
01. Customer group
LED lighting factory, LED power plant, LED packaging factory
02. Means of detection
Constant temperature and humidity test chamber
03. Reference standards
Constant temperature and humidity tests for electrical and electronic products -- Environmental testing -- Part 2: Test methods -- Test Cab: Constant temperature and humidity test GB/T 2423.3-2006.
04. Service content
4.1 Refer to the standard, conduct double 85 test on the product, and provide the third party's test results report.
4.2 Provide the analysis and improvement plan of the product through the double 85 test.
Reliability Test
AEC-Q102 Test Certification Fixed Damp Heat with Humidity Cycling (FMG), LED lamp reliability test method (GB/T 33721-2017), Component screening Ammonia test CAF test, Flame retardant grade Cyclic corrosion test (CCT), Mechanical shock test, High pressure cooker test (PCT), Highly Accelerated Stress Testing (HAST), High and low temperature and humidity test (THB), Hydrogen sulfide test (H2S), Liquid tank thermal shock test (TMSK), Component humidity sensitive grade test (MSL), Screening for high reliability use Hot flash test + acoustic sweep screening for high reliability use (MSL+SAT), LED luminaires reliability test scheme, Vibration test (VVF), Temperature cycle/thermal shock test (TC/TS), LED red Ink test UV aging test, LED light source anti-vulcanization test, Double 85 constant temperature and humidity reliability environmental test (THB), Salt spray test check.
Solution de test de fiabilité des composants de véhicules électriquesDans la tendance au réchauffement climatique et à la consommation progressive des ressources, l'essence automobile est également fortement réduite, les véhicules électriques sont alimentés par l'énergie électrique, réduisant ainsi la chaleur du moteur à combustion interne, les émissions de dioxyde de carbone et de gaz d'échappement, pour des économies d'énergie et une réduction et une amélioration des émissions de carbone. l'effet de serre joue un rôle énorme, les véhicules électriques sont la future tendance du transport routier ; Ces dernières années, les pays avancés du monde développent activement des véhicules électriques, pour des milliers de composants composés de produits complexes, sa fiabilité est particulièrement importante, une variété d'environnements difficiles testent le système électronique des véhicules électriques [cellule de batterie, système de batterie, module de batterie , moteur de véhicule électrique, contrôleur de véhicule électrique, module de batterie et chargeur...], Hongzhan Technology pour vous permettre de trier les solutions de test de fiabilité des pièces liées aux véhicules électriques, dans l'espoir de pouvoir fournir aux clients une référence.Premièrement, différentes conditions environnementales auront des effets différents sur les pièces et provoqueront leur défaillance. Les pièces de la voiture doivent donc être testées conformément aux spécifications pertinentes pour répondre aux exigences internationales et répondre au marché étranger. Voici la corrélation entre les différentes conditions environnementales. Conditions et défaillance du produit :A. Une température élevée entraînera le vieillissement, la gazéification, la fissuration, le ramollissement, la fusion, l'expansion et l'évaporation du produit, entraînant une mauvaise isolation, une défaillance mécanique et une augmentation des contraintes mécaniques ; La basse température rendra le produit fragilisé, givré, retrait et solidification, réduction de la résistance mécanique, entraînant une mauvaise isolation, une fissuration, une défaillance mécanique, une défaillance de l'étanchéité ;B. Une humidité relative élevée entraînera une mauvaise isolation du produit, une défaillance mécanique, une défaillance de l'étanchéité et entraînera une mauvaise isolation ; Une faible humidité relative déshydratera, fragilisera, réduira la résistance mécanique et entraînera des fissures et des défaillances mécaniques ;C. Une faible pression d'air entraînera une expansion du produit, une détérioration de l'isolation électrique de l'air pour produire de la couronne et de l'ozone, un faible effet de refroidissement et entraînera une défaillance mécanique, une défaillance de l'étanchéité et une surchauffe ;D. L'air corrosif provoquera la corrosion du produit, l'électrolyse, la dégradation de la surface, une conductivité accrue, une résistance de contact accrue, entraînant une usure accrue, une panne électrique et une panne mécanique ;E. Des changements rapides de température provoqueront une surchauffe locale du produit, entraînant une déformation par fissuration et une défaillance mécanique ;F. Les dommages causés par les vibrations accélérées ou les impacts provoqueront une résonance de fatigue sous contrainte mécanique du produit et entraîneront une augmentation des dommages structurels.Par conséquent, les produits doivent passer les tests climatiques suivants pour tester la fiabilité des composants : test de poussière (poussière), test de haute température, test de stockage de température et d'humidité, test de récupération sel/sec/chaud, test de cycle de température et d'humidité, immersion/infiltration. test, test au brouillard salin, test à basse température, test de choc thermique, test de vieillissement à l'air chaud, test de résistance aux intempéries et à la lumière, test de corrosion des gaz, test de résistance au feu, test de boue et d'eau, test de condensation de rosée, test de cycle à température variable élevée, pluie ( étanche), test, etc.Voici les conditions de test pour l’électronique automobile :A. IC et éclairage intérieur pour locomotives,Modèle recommandé : vibration de la chambre complèteB. Tableau de bord, contrôleur de moteur, casque Bluetooth, capteur de pression des pneus, système de positionnement par satellite GPS, rétroéclairage des instruments, éclairage intérieur, éclairage extérieur, batterie au lithium automobile, capteur de pression, moteur et contrôleur, DVR automobile, câble, résine synthétiqueModèle recommandé : chambre d'essai à température et humidité constantesC. Écran LCD 8,4" pour voituresModèle recommandé : machine de recombinaison de contraintes thermiquesDeuxièmement, les pièces électroniques automobiles sont divisées en trois catégories, dont les circuits intégrés, les semi-conducteurs discrets et les composants passifs, afin de garantir que ces composants électroniques automobiles répondent aux normes les plus élevées en matière de sécurité automobile. L'Automotive Electronics Council(AEC) est un ensemble de normes AEC-Q100 conçue pour les pièces actives (microcontrôleurs et circuits intégrés...) et AEC-Q200 conçue pour les composants passifs, qui précise la qualité et la fiabilité des produits qui doivent être atteintes pour les composants passifs. parties. AEC-Q100 est la norme de test de fiabilité des véhicules formulée par l'organisation AEC, qui constitue une entrée importante pour les fabricants de 3C et de circuits intégrés dans le module international des usines automobiles, ainsi qu'une technologie importante pour améliorer la qualité de fiabilité des circuits intégrés de Taiwan. De plus, l'usine automobile internationale a satisfait à la norme de sécurité (ISO-26262). AEC-Q100 est l’exigence de base pour réussir cette norme.1. Liste des pièces électroniques automobiles pour A.EC-Q100 : mémoire jetable automobile, régulateur abaisseur d'alimentation, photocoupleur automobile, capteur accéléromètre à trois axes, dispositif vidéo jiema, redresseur, capteur de lumière ambiante, mémoire ferroélectrique non volatile, Circuit intégré de gestion de l'alimentation, mémoire flash intégrée, régulateur DC/DC, dispositif de communication réseau de jauge de véhicule, circuit intégré de pilote LCD, amplificateur différentiel d'alimentation unique, interrupteur de proximité capacitif désactivé, pilote LED haute luminosité, commutateur asynchrone, IC 600 V, IC GPS, puce de système d'aide à la conduite ADAS, récepteur GNSS, amplificateur frontal GNSS... B. Conditions de test de température et d'humidité : cycle de température, cycle de température de puissance, durée de stockage à haute température, durée de vie à haute température, taux de défaillance en début de vie ;2. Liste des pièces électroniques automobiles pour A.AC-Q200 : composants électroniques de qualité automobile (conformes à AEC-Q200), composants électroniques commerciaux, composants de transmission de puissance, composants de commande, composants de confort, composants de communication, composants audio.B. Conditions de test : stockage à haute température, durée de vie à haute température, cycle de température, choc thermique, résistance à l'humidité.
Conditions de test de fiabilité des montres intelligentesDans la société d’aujourd’hui, les élèves du primaire et même les enfants de la maternelle disposent d’une montre intelligente. Alors, qu’est-ce qu’une montre intelligente ? À la fin de la période de promotion des montres de sport en raison du décollage rapide des téléphones intelligents, la table intelligente n'a pas l'intention de fournir le même effet PIM que les PDA et les téléphones intelligents, et fait appel aux accessoires d'assistant d'agent de téléphone intelligent, similaires aux écouteurs Bluetooth. Aides vocales des téléphones intelligents, les tables intelligentes deviennent des aides à l'information et aux données, offrant un affichage et un fonctionnement des informations plus pratiques et plus rapides. Il existe également d'autres noms tels que Smart Accessories et Android Remote. Positionnée comme un assistant de téléphonie mobile, l'idée est que « la raison pour laquelle la montre de poche a disparu est parce qu'il s'agit simplement de regarder l'heure, mais aussi de sortir la poche, environ 2-3 secondes, mais la montre est inférieure à 1 seconde, ce qui est plus pratique que la montre de poche." Et après observation, maintenant tout le monde sort un smartphone et l'ouvre, juste pour confirmer le message, de sorte qu'environ des dizaines de fois, ces confirmations même en tapant la réponse n'ont pas besoin, si les dizaines de confirmations ont changé sur la montre, vous n'avez pas toujours Il faut tirer sur le déverrouillage de la machine, car cela prend autant de temps qu'une montre de poche. Donc, après être devenu l'assistant du téléphone portable, la télécommande, si vous ne prenez pas le téléphone portable pour sortir, la montre ne sert à rien en plus d'afficher l'heure, et le casque Bluetooth sans téléphone portable, presque de la ferraille .Combiné avec un bracelet intelligent pour mieux vendre !!Les montres intelligentes, de « plus petites que les ordinateurs indépendants des PDA » aux « aides à la télécommande des téléphones intelligents », semblent avoir été un positionnement plus réussi, mais ce CES 2014 peut être vu, combiné avec un meilleur positionnement du bracelet intelligent. Le bracelet intelligent utilise des capteurs d'accélération (et des gyroscopes, des capteurs magnétorésistifs, etc.) pour détecter la vitesse de course de l'utilisateur, le nombre de pas, etc., et peut même détecter le sommeil profond et fournir des suggestions d'exercice et de sommeil. Lorsque le bracelet est ajouté à l'écran, il peut afficher l'heure et les informations sur le téléphone mobile. Appel aux informations sur les téléphones mobiles, s'il n'y a pas de besoin d'information urgent, en fait, seul un casque Bluetooth similaire est considéré comme une option (courrier, besoin du conducteur), si tout le monde peut accepter la vitesse d'accès à l'information du glissement, alors le marché le fera être limité. Cependant, en plus de l'attrait pour la surveillance des enregistrements d'exercice et de sommeil, et de l'accent mis sur les conseils d'information, plutôt que de mettre l'accent sur la télécommande de la montre sur le téléphone mobile, cela équivaut à un petit sacrifice ou presque à aucun sacrifice pour l'utilisateur final, mais elle apporte une valeur d'application immédiate et nouvelle (sport, aide au sommeil), plutôt que de répéter complètement la valeur d'efficacité du téléphone mobile, ce qui augmente encore le succès commercial de la montre intelligente. Après avoir constamment ajusté l'efficacité, l'application et le positionnement, et intégré l'anneau intelligent, nous pensons que nous pouvons avoir un marché plus élevé que par le passé. Montre intelligente pour les personnes et les fonctions :1. Montres intelligentes pour adultesFonctions : appels téléphoniques mobiles synchrones Bluetooth, envoi et réception de messages texte, surveillance du sommeil, surveillance de la fréquence cardiaque, rappel de sédentarité, course à pied, photographie à distance, lecture de musique, vidéo, boussole et autres fonctions, conçues pour les personnes tendance !2, montre intelligente pour les personnes âgéesFonctions : positionnement GPS ultra précis, appels familiaux, appels d'urgence, surveillance de la fréquence cardiaque, rappels de sédentarité, rappels de médicaments et autres fonctions personnalisées pour les personnes âgées, fournissant un parapluie pour les voyages des personnes âgées, apportez cette montre, refusez de perdre les personnes âgées !3, montre intelligente de positionnement pour enfantsFonctions : positionnement multiple, appel bidirectionnel, SOS SOS, surveillance à distance, anti-perte intelligente, suivi historique, clôture électronique, podomètre, récompense d'amour et autres fonctions, pour garantir la sécurité des enfants, donner aux enfants un environnement de croissance sain et sûr. ! Spécification de la montre intelligente :CEI 60086-3 : Piles de montreISO 105-A02 : Test de solidité des couleurs -A02 - Évaluation de l'échelle de gris pour la décolorationISO 105-A03-1993 : Essais de solidité des couleurs -A03- Évaluation en échelle de gris de la teintureISO 764 : Montres horlogères antimagnétiquesISO 1413 : Montres horlogères antichocsISO 2281 : Montres horlogères étanchesISO 11641-1993 : Cuir - essais de solidité des couleurs - Solidité des couleurs à la transpirationISO 14368-3 : Essai de résistance aux chocs du verre de tableMIL 810G : Considérations d'ingénierie environnementale et tests en laboratoireQB/T 1897-1993 : Contrôle des montres étanchesQB/T 1898-1993 : Inspection des montres antichocsQB/T 1908-1993 : test de fiabilité cléQB/T 1919-2012 : Contrôle de type des montres numériques à quartz avec aiguilles et cristaux liquidesQB/T 2047-2007 : Inspection des bracelets de montre métalliquesGB/T 2537-2001 : test de solidité des couleurs du cuir, solidité des couleurs par meulage alternatifQB/T 2540-2002 : Inspection des bracelets en cuirGB/T 6048-1985 : montre électronique à quartz numériqueGB/T 18761-2007 : indicateur d'affichage numérique électroniqueGB/T 18828-2002 : Norme pour les montres de plongéeGB/T 22778-2008 : inspection de type chronomètre à quartz numérique LCDGB/T 22780-2008 : Inspection de type des montres à quartz LCDGB/T 26716-2011 idt ISO 764-2002 : Inspection des montres antimagnétiquesHJ216-2005 : Montre Eco-Drive Projet pilote de montre intelligente :Fiabilité, précision de mesure de période de temps, différence quotidienne instantanée, température de fonctionnement, plage de tension, coefficient de température moyen, coefficient de tension, résistance à l'humidité, résistance aux chocs, performances d'étanchéité, cycle de remplacement de la batterie, résistance à la fatigue clé, résistance à la lumière et aux intempéries, performances antistatiques Température ambiante plage : -25 ℃ ~ 55 ℃ Température de fonctionnement : -5 ~ 50 ℃/80 %R.H. (Exigences : chaque fonction et chaque affichage à cristaux liquides doivent être complets et normaux) Test de température de fonctionnement haute et basse : 50 ± 1 ℃/24 h → RT /1h→-5±1℃ Conditions de test de changement de température : (IEC60068-2) Haute température : 30, 40, 55℃ Basse température : 5, -5, -10, -25℃ Temps de séjour du Nb (y compris le temps de montée et de refroidissement ) : 10min, 30min, 1h Variabilité de température Nb : 3±0,6℃/min, 5±1℃/min. Test de chaleur humide :1,40 ± 1 ℃/85 ~ 95 % HR/24 h.2,8 ± 1 ℃/85 ~ 95 % HR/4 h. Test d'humidité de stockage en entrepôt :40 ℃/20 %, 30 %, 40 %, 50 %, 60 %, 70 %, 80 %, 90 %49 ℃/10 %, 20 %, 30 %, 40 %, 50 %, 60 %, 70 %, 80 %, 90 %Chaque étape37 heures Test de simulation de changement de température dans le transport aérien :Spécification: IEC60721.2 Conditions environnementales d'application des produits électriques et électroniques - norme nationale de transportCatégorie : 2K5 (Applicable à la gamme climatique des transports internes non ventilés et non pressurisés dans le monde entier)Plage de température : -65℃←→85℃RAMPE : 5 ℃/min Test de simulation de changement de température dans le transport aérien :Spécification : IEC60721.6 Conditions environnementales d'application des produits électriques et électroniques - MarineCatégorie : 6K5 (soumis au froid, installé dans des parties protégées des intempéries mais non chauffées)Plage de température : -25℃←→40℃RAMPE : 3 ℃/min Test de résistance aux changements de température de l'eau :5 min dans de l'eau à 40 ℃ → 5 min dans de l'eau à 20 ℃, 5 min dans de l'eau à 40 ℃, profondeur d'eau de 10 cm Test de résistance à la pression de l'eau :Trempez la montre dans un récipient d'eau, appliquez une surpression de 2*10^5Pa [ou 20 m de profondeur d'eau] en 1 minute, maintenez 10 minutes, puis en 1 minute la pression sera à la pression standard de l'environnement environnant. Test de résistance à l'eau salée :Mettez la montre testée dans une solution de chlorure de sodium 30g/L à 18°C ~ 25°C pendant 24h. Vérifiez que le boîtier et les accessoires après le test ne doivent pas présenter de changements significatifs ; Vérifiez les pièces mobiles, en particulier la bague avant rotative, qui doit pouvoir maintenir un fonctionnement normal. Test de fiabilité sous-marine :La montre testée est immergée dans 30 cm ± 2 cm d'eau et placée à une température de 18 °C ~ 25 °C pendant 50 h, et tous les dispositifs mécaniques doivent toujours fonctionner normalement. Pendant l'essai, les dispositifs mécaniques qui doivent fonctionner dans l'eau, tels que les dispositifs de préréglage de l'heure et les interrupteurs d'éclairage, doivent pouvoir fonctionner normalement ; Effectuez un test de condensation, la surface intérieure du verre de table ne doit pas apparaître de brouillard de condensation et la fonction mécanique ne doit pas être endommagée Test de résistance aux chocs thermiques :Plongez successivement la montre dans une eau de différentes températures d'une profondeur de 30cm±2cm : placez-la dans une eau à 40°C ±2°C pendant 10 minutes ; Mettez dans de l'eau à 5 ℃ ± 2 ℃ pendant 10 minutes ; Mettre dans l'eau à 40°C ± 2°C pendant 10 minutes (la montre ne doit pas être sortie de l'eau et replongée dans une autre température d'eau pendant plus d'1 minute). Effectuez un test de condensation, la surface intérieure du verre de table ne doit pas apparaître de brouillard de condensation et doit fonctionner normalement. Test de résistance chimique :Spécifications de référence : ASTM F 1598-95, ASTM D 1308-87, ASTM D 1308-02Ingrédients : Produits chimiques ménagers (saleté, poussière, huile, fumées et beurre de cacahuète, cosmétiques, crème pour les mains... Etc.)Temps : 24 heures Test de résistance à la corrosion à la sueur artificielle :QB/T 1901.2-2006 « Couvercles en alliage d'or de la coque et de ses accessoires – Partie 2 Test de pureté, d'épaisseur, de résistance à la corrosion et d'adhérence »Principe du test : La sueur artificielle est utilisée pour entrer en contact avec l'objet à haute température (40 ± 2) ℃, et après une longue période (au moins 24 heures), l'état de sa surface est observé pour déterminer sa résistance à la corrosion par la sueur. Essai de vibrations :Accélération (19,6 m/s^2), fréquence 30 Hz ~ 120 Hz, cycle de balayage 1 minExigences : les fonctions et l'écran LCD doivent être complets et normaux, et les pièces ne doivent pas être desserrées et tomber. Test de chute :Bois dur lithographique de 1 m de hauteur, une fois côté montre, une fois surface en verreExigences : Fonctionnement normal après chaque impact, aucun dommage d'apparence [verre brisé, pied du boîtier plié, composant du boîtier plié, boîtier cassé, bouton endommagé] Essai d'impact :Matériau du cône d'impact : polytétrafluoroéthylène, vitesse d'impact 4,43 m/s, hauteur d'impact 1 m. Test de balancement des bras :2 à 10Hz
Test de stabilité du médicament
L'efficacité et la sécurité des médicaments ont attiré beaucoup d'attention, et il s'agit également d'une question de moyens de subsistance à laquelle le pays et le gouvernement attachent une grande importance. La stabilité des médicaments affectera leur efficacité et leur sécurité. Afin de garantir la qualité des médicaments et des conteneurs de stockage, des tests de stabilité doivent être effectués pour déterminer leur durée d'efficacité et leur état de stockage. Le test de stabilité étudie principalement si la qualité des médicaments est affectée par des facteurs environnementaux tels que la température, l'humidité et la lumière, et si elle change avec le temps et la corrélation entre eux, et étudie la courbe de dégradation des médicaments, selon laquelle la période d'efficacité est présumée pour garantir l’efficacité et la sécurité des médicaments lorsqu’ils sont utilisés. Cet article rassemble les informations standard et les méthodes de test requises pour divers tests de stabilité pour référence des clients.
Premièrement, les critères des tests de stabilité des médicaments
Conditions de conservation des médicaments :
Conditions de stockage (Remarque 2)
Expérience à long terme
25℃±2℃ / 60 %±5 % HR ou
30 ℃ ± 2 ℃ /65 % ± 5 % d'humidité relative
Test accéléré
40 ℃ ± 2 ℃ / 75 % ± 5 % HR
Test intermédiaire (Remarque 1)
30 ℃ ± 2 ℃ / 65 % ± 5 % HR
Remarque 1 : Si la condition de test à long terme a été réglée à 30 ℃ ± 2 ℃/65 % ± 5 % HR, il n'y a pas de test intermédiaire ; si les conditions de stockage à long terme sont de 25 ℃ ± 2 ℃/60 % ± 5 % HR et qu'il y a un changement significatif dans le test accéléré, alors un test intermédiaire doit être ajouté. Et devrait être évalué selon le critère de « changement significatif ».
Remarque 2 : Les récipients imperméables scellés tels que les ampoules en verre peuvent être exemptés des conditions d'humidité. Sauf indication contraire, tous les tests doivent être effectués conformément au plan de test de stabilité lors de l'essai intermédiaire.
Les données des tests accélérés devraient être disponibles pendant six mois. La durée minimale du test de stabilité est de 12 mois pour le test moyen et le test longue durée.
Conserver au réfrigérateur :
Conditions de stockage
Expérience à long terme
5 ℃ ± 3 ℃
Test accéléré
25 ℃ ± 2 ℃ / 60 % ± 5 % HR
Conservé au congélateur :
Conditions de stockage
Expérience à long terme
-20 ℃ ± 5 ℃
Test accéléré
5 ℃ ± 3 ℃
Si le produit contenant de l'eau ou des solvants susceptibles de perdre du solvant est conditionné dans un récipient semi-perméable, l'évaluation de la stabilité doit être effectuée sous une faible humidité relative pendant une longue période, ou un test intermédiaire de 12 mois, et un test accéléré de 6 mois, afin de prouver que le médicament placé dans le récipient semi-perméable peut résister à un environnement à faible humidité relative.
Contenant de l'eau ou des solvants
Conditions de stockage
Expérience à long terme
25 ℃ ± 2 ℃ / 40 % ± 5 % RH ou 30 ℃ ± 2 ℃ /35 % ± 5 % d'humidité relative
Test accéléré
40 ℃ ± 2 ℃ ; ≤ 25 % HR
Test intermédiaire (Remarque 1)
30 ℃ ± 2 ℃ / 35 % HR ± 5 % HR
Remarque 1 : Si la condition de test à long terme est de 30 ℃ ± 2 ℃ / 35 % ± 5 % HR, il n'y a pas de test intermédiaire.
Le calcul du taux de perte relative d’eau à une température constante de 40℃ est le suivant :
Humidité relative substituée (A)
Contrôler l'humidité relative (R)
Rapport du taux de perte d'eau ([1-R]/[1-A])
60% HR
25% HR
1.9
60% HR
40% HR
1,5
65% HR
35% HR
1.9
75% HR
25% HR
3.0
Illustration : Pour les médicaments aqueux placés dans des récipients semi-perméables, le taux de perte d'eau à 25%HR est trois fois supérieur à 75%HR.
Deuxièmement, les solutions de stabilité des médicaments
Critères courants des tests de stabilité des médicaments
(Source : Food and Drug Administration, ministère de la Santé et du Bien-être social)
Article
Conditions de stockage
Expérience à long terme
25°C /60% HR
Test accéléré
40°C /75%HR
Test intermédiaire
30°C/65%HR
(1) Test sur une large plage de température
Article
Conditions de stockage
Expérience à long terme
Conditions de température basse ou inférieure à zéro
Test accéléré
Température et humidité ambiantes ou conditions de basse température
(2) Équipement d'essai
1. Chambre d'essai à température et humidité constantes
2. Chambre de test de stabilité des médicaments
Fiabilité du substrat céramiqueLe PCB en céramique (substrat en céramique) fait référence à une plaque de traitement spéciale dans laquelle une feuille de cuivre est directement liée à la surface (simple ou double) d'un substrat en céramique d'alumine (Al2O3) ou de nitrure d'aluminium (AlN) à haute température. Le substrat composite ultra-mince présente d'excellentes performances d'isolation électrique, une conductivité thermique élevée, une excellente soudure et une force d'adhérence élevée, et peut être gravé dans une variété de graphiques tels que des cartes PCB, avec une grande capacité de transport de courant. Par conséquent, le substrat céramique est devenu le matériau de base de la technologie de structure de circuit électronique de haute puissance et de la technologie d'interconnexion, qui convient aux produits à haute valeur calorique (LED haute luminosité, énergie solaire), et son excellente résistance aux intempéries peut être appliquée à environnements extérieurs difficiles.Principaux produits d'application : Carte porteuse LED haute puissance, lumières LED, lampadaires LED, onduleur solaireCaractéristiques du substrat céramique :Structure : Excellente résistance mécanique, faible déformation, coefficient de dilatation thermique proche de celui de la plaquette de silicium (nitrure d'aluminium), dureté élevée, bonne aptitude au traitement, haute précision dimensionnelleClimat : convient aux environnements à haute température et humidité, conductivité thermique élevée, bonne résistance à la chaleur, résistance à la corrosion et à l'usure, résistance aux UV et au jaunissementChimie : Sans plomb, non toxique, bonne stabilité chimiqueÉlectrique : haute résistance d’isolation, métallisation facile, graphisme des circuits et forte adhérenceMarché : Matériaux abondants (argile, aluminium), faciles à fabriquer, prix basComparaison des caractéristiques thermiques des matériaux PCB (conductivité) :Panneau en fibre de verre (PCB traditionnel) : 0,5 W/mK, substrat en aluminium : 1~2,2W/mK, substrat en céramique : 24[alumine]~170[nitrure d'aluminium]W/mKCoefficient de transfert thermique du matériau (unité W/mK) :Résine : 0,5, alumine : 20-40, carbure de silicium : 160, aluminium : 170, nitrure d'aluminium : 220, cuivre : 380, diamant : 600Classification du processus de substrat céramique :Selon la ligne, le processus de substrat en céramique est divisé en : film mince, film épais, céramique multicouche cocuite à basse température (LTCC)Thin Film Process (DPC) : Contrôle précis de la conception des circuits des composants (largeur de ligne et épaisseur de film)Processus de couche épaisse (Thick film) : pour assurer la dissipation de la chaleur et les conditions météorologiquesCéramique multicouche cocuite à basse température (HTCC) : Utilisation de vitrocéramiques à basse température de frittage, faible point de fusion, conductivité élevée des caractéristiques de co-cuisson des métaux précieux, substrat céramique multicouche) et assemblage.Céramiques multicouches cocuites à basse température (LTCC) : empilez plusieurs substrats céramiques et intégrez des composants passifs et d'autres circuits intégrés.Processus de substrat céramique à couche mince :· Prétraitement → pulvérisation → revêtement photorésistant → développement de l'exposition → placage en ligne → retrait du film· Stratification → pressage à chaud → dégraissage → cuisson du substrat → formation du motif de circuit → cuisson du circuit· Stratification → motif de circuit imprimé de surface → pressage à chaud → dégraissage → co-cuisson· Graphiques de circuits imprimés → stratification → pressage à chaud → dégraissage → co-cuissonConditions de test de fiabilité du substrat céramique :Fonctionnement à haute température du substrat en céramique : 85 ℃Fonctionnement à basse température du substrat céramique : -40 ℃Substrat céramique froid et choc thermique :1. 155℃(15min)←→-55℃(15min)/300cycles2. 85 ℃ (30 min) s'il vous plaît - - 40 ℃ (30 min)/RAMPE : 10 min (12,5 ℃ / min) / 5 cyclesAdhésion du substrat céramique : coller à la surface du panneau avec du ruban adhésif 3M#600. Après 30 secondes, déchirez rapidement dans une direction de 90° avec la surface de la planche.Expérience d'encre rouge sur substrat céramique : faire bouillir pendant une heure, imperméableÉquipement d'essai :1. Chambre d'essai de chaleur humide à haute et basse température2. Chambre d'essai de choc froid et thermique à gaz à trois boîtes
Test de fiabilité des tablettesUn ordinateur tablette, également connu sous le nom d'ordinateur personnel tablette (tablette PC), est un petit ordinateur personnel portable qui utilise un écran tactile comme périphérique d'entrée de base. C'est un produit électronique à forte mobilité, et on le voit partout dans la vie (comme les gares d'attente, les trains, les trains à grande vitesse, les cafés, les restaurants, les salles de réunion, les banlieues, etc.). Les gens ne portent qu'une simple protection de manteau ou même pas, afin de faciliter l'utilisation, la conception réduit la taille, de sorte qu'elle puisse être directement placée dans la poche ou le sac à main, le sac à dos, mais la tablette en train de se déplacer connaîtra également de nombreuses changements physiques environnementaux (tels que température, humidité, vibration, impact, extrusion, etc.). Etc.) et les dommages naturels (tels que la lumière ultraviolette, la lumière du soleil, la poussière, le brouillard salin, les gouttelettes d'eau... Cela provoquera également des blessures artificielles involontaires ou un fonctionnement anormal et un mauvais fonctionnement, et même provoquera des pannes et des dommages (tels que : produits chimiques ménagers, transpiration des mains, chute, insertion et retrait excessifs des terminaux, frottement des poches, clous en cristal... Ceux-ci réduiront la durée de vie de la tablette, afin d'assurer la fiabilité du produit et de prolonger la durée de vie pour l'améliorer, nous devons porter sur un certain nombre de projets de tests de fiabilité environnementale sur la tablette, les tests pertinents suivants pour votre référence.Description du projet d'essais environnementaux :Simuler divers environnements difficiles et évaluations de fiabilité utilisées par les tablettes électroniques pour tester si leurs performances répondent aux exigences ; Il comprend principalement le fonctionnement à haute et basse température et le stockage à haute et basse température, la température et la condensation, le cycle de température et les chocs, les tests de combinaison humide et thermique, les ultraviolets, la lumière du soleil, l'égouttement, la poussière, le brouillard salin et d'autres tests.Plage de température de fonctionnement : 0 ℃ ~ 35 ℃/5 % ~ 95 % RHPlage de température de stockage : -10 ℃ ~ 50 ℃/10 % ~ 90 % RH.Test de fonctionnement à basse température : -10 ℃/2h/fonctionnement électriqueTest de fonctionnement à haute température : 40℃/8h/tout en fonctionnementTest de stockage à basse température : -20 ℃/96h/arrêtTest de stockage à haute température : 60℃/96h/arrêtTest à haute température de stockage du véhicule : 85℃/96h/arrêtChoc thermique : -40℃(30min)←→80℃(30min)/10cycleTest de chaleur humide : 40℃/95%R.H./48h/veilleTest de cycle chaud et humide : 40℃/95%R.H./1h→rampe :1℃/min→-10℃/1h, 20 cycles, veilleTest de chaleur humide : 40℃/95%R.H./48h/veilleTest de cycle chaud et humide : 40℃/95%R.H./1h→rampe :1℃/min→-10℃/1h, 20 cycles, veilleTest de résistance aux intempéries :Simulation des conditions naturelles les plus sévères, test d'effet solaire thermique, chaque cycle de 24 heures, 8 heures d'exposition continue, 16 heures pour garder l'obscurité, chaque cycle de rayonnement de 8,96 kWh/m2, un total de 10 cycles.Essai au brouillard salin :Solution de chlorure de sodium à 5 %/Température de l'eau 35°C/PH 6,5~7,2/24h/Arrêt → Coque d'essuyage à l'eau pure →55°C/0,5h→ Test de fonctionnement : après 2 heures, après 40/80 %R.H./168h.Test d'égouttement : selon la norme IEC60529, conformément à l'indice d'étanchéité IPX2, peut empêcher les gouttelettes d'eau tombant à un angle inférieur à 15 degrés de pénétrer dans la tablette et de causer des dommages. Conditions de test : débit d'eau 3 mm/min, 2,5 min à chaque position, point de contrôle : après test, 24 heures plus tard, veille pendant 1 semaine.Test de poussière :Selon IEC60529, conformément à la classe de poussière IP5X, ne peut pas empêcher complètement l'entrée de poussière mais n'affecte pas l'appareil devrait être l'action et anquan, en plus des tablettes, il existe actuellement de nombreux produits 3C portables mobiles personnels couramment utilisés normes de poussière , tels que : téléphones portables, appareils photo numériques, MP3, MP4... Attendons.Conditions:Échantillon de poussière 110 mm/3 ~ 8 h/test pour un fonctionnement dynamiqueAprès le test, un microscope est utilisé pour détecter si des particules de poussière pénètrent dans l'espace intérieur de la tablette.Test de coloration chimique :Confirmer les composants externes liés à la tablette, confirmer la résistance chimique des produits chimiques ménagers, produits chimiques : crème solaire, rouge à lèvres, crème pour les mains, anti-moustique, huile de cuisson (huile de salade, huile de tournesol, huile d'olive... Etc), la durée du test est de 24 heures, vérifiez la couleur, la brillance, la douceur de la surface... Etc., et confirmez s'il y a des bulles ou des fissures.Essai mécanique :Tester la solidité de la structure mécanique de la tablette informatique et la résistance à l’usure des composants clés ; Comprend principalement le test de vibration, le test de chute, le test d'impact, le test de prise et le test d'usure... Etc.Test de chute : La hauteur de 130 cm, chute libre sur la surface lisse du sol, chaque côté est tombé 7 fois, 2 côtés au total 14 fois, tablette en état de veille, chaque chute, le fonctionnement du produit testé est vérifié.Test de chute répété : la hauteur de 30 cm, chute libre sur la surface lisse et dense de 2 cm d'épaisseur, chaque côté est tombé 100 fois, chaque intervalle de 2 s, 7 côtés au total 700 fois, toutes les 20 fois, vérifiez le fonctionnement du produit expérimental, la tablette est en état de pouvoir.Test de vibration aléatoire : fréquence 30 ~ 100 Hz, 2G, axial : trois axes. Temps : 1 heure dans chaque sens, pour un total de trois heures, la tablette est en mode veille.Test de résistance aux chocs de l'écran : Une boule de cuivre de 11φ/5,5 g est tombée sur la surface centrale d'un objet de 1 m à une hauteur de 1,8 m et une boule d'acier inoxydable de 3ψ/9 g est tombée à une hauteur de 30 cm.Durabilité de l’écriture sur écran : plus de 100 000 mots (largeur R0,8 mm, pression 250g)Durabilité de l’écran tactile : 1 million, 10 millions, 160 millions, 200 millions de fois ou plus (largeur R8mm, dureté 60°, pression 250g, 2 fois par seconde)Test de presse à plat sur écran : le diamètre du bloc de caoutchouc est de 8 mm, la vitesse de pression est de 1,2 mm/min, la direction verticale est de 5 kg, appuyez à plat sur la fenêtre 3 fois, à chaque fois pendant 5 secondes, l'écran doit s'afficher normalement.Test de presse à plat avant écran : Toute la zone de contact, la direction de la force verticale de 25 kg, appuyez à plat sur chaque côté de la tablette, pendant 10 secondes, appuyez à plat 3 fois, il ne devrait y avoir aucune anomalie.Prise des écouteurs et test de retrait : Insérez l'écouteur verticalement dans le trou de l'écouteur, puis retirez-le verticalement. Répétez ceci plus de 5000 foisTest de prise et de traction d'E/S : La tablette est en état de veille et le connecteur de la borne est retiré, un total de plus de 5 000 fois.Test de frottement de poche : Simulez divers matériaux dans une poche ou un sac à dos, la tablette est frottée à plusieurs reprises dans la poche 2 000 fois (le test de friction ajoutera également des particules de poussière mélangées, notamment des particules de poussière, des particules d'herbe yan, des peluches et des particules de papier pour le test de mélange).Test de dureté de l'écran : dureté supérieure à la classe 7 (ASTM D 3363, JIS 5400)Test d'impact sur écran : frapper les côtés et le centre les plus vulnérables du panneau avec une force supérieure à 5㎏
Méthodes de dépannage de base pour les chambres d’essai à haute et basse température :1. Équipement de test à haute et basse température. Lors des tests à haute température, si le changement de température n'atteint pas la valeur de température de test, le système électrique peut être vérifié et les défauts peuvent être éliminés un par un. Si la température augmente lentement, vous devez vérifier le système de circulation d'air pour voir si le déflecteur de régulation de la circulation d'air est normalement ouvert. Sinon, vérifiez le moteur de circulation d'airLe fonctionnement est-il normal. Si le dépassement de température est important, il est nécessaire d'ajuster les paramètres de réglage du PID. Si la température augmente directement et est protégée contre la surchauffe, le contrôleur présentera un dysfonctionnement et l'instrument de contrôle devra être remplacé.2. Lorsque l'équipement de test à haute et basse température fonctionne soudainement pendant l'opération de test, l'invite d'affichage de défaut correspondante et l'invite d'alarme sonore apparaîtront sur l'instrument de contrôle. L'opérateur peut identifier rapidement à quel type de défaut il appartient en se référant au chapitre de dépannage dans le fonctionnement et l'utilisation de l'équipement, puis demander au personnel professionnel de le dépanner rapidement pour assurer le déroulement normal de l'expérience. D'autres équipements de tests environnementaux peuvent subir d'autres phénomènes lors de leur utilisation, il est donc nécessaire de les analyser et de les éliminer spécifiquement. L'entretien régulier des équipements d'essais environnementaux, le nettoyage régulier du condenseur du système de réfrigération, la lubrification des pièces mobiles conformément aux instructions, ainsi que l'entretien et l'inspection réguliers du système de commande électrique sont des tâches essentielles.3. Si la basse température de l'instrument de test à haute et basse température ne peut pas répondre aux indicateurs de test, vous devez alors observer les changements de température, que la température baisse très lentement ou qu'il y ait une tendance à la récupération de la température après avoir atteint une certaine valeur. Le premier doit vérifier si la chambre de travail est séchée avant d'effectuer le test à basse température, afin que la chambre de travail puisse être maintenue au sec avant de placer l'échantillon d'essai dans la chambre de travail pour des tests supplémentaires. S'il y a trop d'échantillons de test placés dans la chambre de travail, ce qui empêche l'air de circuler complètement dans la chambre de travail, après avoir exclu les raisons ci-dessus, vous devez déterminer s'il s'agit d'un défaut du système de réfrigération. Dans ce cas, vous devez embaucher du personnel professionnel du fabricant du Lab Companion pour la maintenance. Ce dernier phénomène est dû à un mauvais environnement d’utilisation de l’équipement. La température et l'emplacement de l'équipement (distance entre le boîtier et le mur) doivent répondre aux exigences (telles que spécifiées dans les instructions d'utilisation de l'équipement).À l'heure actuelle, les principaux produits de la société comprennent : des chambres d'essai à haute et basse température, des chambres d'essai à changement rapide de température, des chambres d'essai à température et humidité constantes et des chambres d'essai d'impact à haute et basse température.
Cellule solaire de concentrateurUne cellule solaire à concentration est une combinaison de [Concentrator Photovoltaic]+[Fresnel Lenes]+[Sun Tracker]. Son efficacité de conversion d'énergie solaire peut atteindre 31 % ~ 40,7 %, bien que l'efficacité de conversion soit élevée, mais en raison de la longue période d'exposition au soleil, elle a été utilisée dans l'industrie spatiale dans le passé et peut maintenant être utilisée dans la production d'électricité. industrie avec traqueur de lumière solaire, qui ne convient pas aux familles en général. Le matériau principal des cellules solaires à concentration est l'arséniure de gallium (GaAs), c'est-à-dire les trois matériaux du groupe cinq (III-V). Les matériaux généraux en cristaux de silicium ne peuvent absorber que l'énergie d'une longueur d'onde de 400 à 1 100 nm dans le spectre solaire, et le concentrateur est différent de la technologie solaire des plaquettes de silicium, grâce au semi-conducteur composé à jonctions multiples qui peut absorber une plus large gamme d'énergie du spectre solaire, et le le développement actuel de cellules solaires à concentrateur InGaP/GaAs/Ge à trois jonctions peut grandement améliorer l'efficacité de la conversion. La cellule solaire à concentration à trois jonctions peut absorber une énergie d'une longueur d'onde de 300 ~ 1 900 nm par rapport à son efficacité de conversion qui peut être considérablement améliorée, et la résistance thermique des cellules solaires à concentration est supérieure à celle des cellules solaires de type plaquette générales.
Zone de conduction de la chaleurConductivité thermiqueC'est la conductivité thermique d'une substance, passant d'une température élevée à une température basse au sein de cette même substance. Également connu sous le nom de : conductivité thermique, conductivité thermique, conductivité thermique, coefficient de transfert thermique, transfert de chaleur, conductivité thermique, conductivité thermique, conductivité thermique, conductivité thermique.Formule de conductivité thermiquek = (Q/t) *L/(A*T) k : conductivité thermique, Q : chaleur, t : temps, L : longueur, A : surface, T : différence de température en unités SI, l'unité de conductivité thermique est W/(m*K), en unités impériales, correspond à Btu · pi/(h · pi2 · °F)Coefficient de transfert de chaleurEn thermodynamique, en génie mécanique et en génie chimique, la conductivité thermique est utilisée pour calculer la conduction thermique, principalement la conduction thermique de convection ou la transformation de phase entre fluide et solide, qui est définie comme la chaleur traversant l'unité de surface par unité de temps sous la différence de température unitaire, appelée coefficient de conduction thermique de la substance, si l'épaisseur de la masse de L, la valeur de mesure doit être multipliée par L, La valeur résultante est le coefficient de conductivité thermique, généralement noté k.Conversion unitaire du coefficient de conduction thermique1 (CAL) = 4,186 (j), 1 (CAL/s) = 4,186 (j/s) = 4,186 (W).L'impact de la température élevée sur les produits électroniques :L'augmentation de la température entraînera une diminution de la valeur de résistance de la résistance, mais réduira également la durée de vie du condensateur. De plus, la température élevée entraînera une diminution du transformateur, des performances des matériaux d'isolation associés et une température trop élevée. un niveau élevé entraînera également une modification de la structure de l'alliage du joint de soudure sur la carte PCB : l'IMC s'épaissit, les joints de soudure deviennent cassants, les moustaches d'étain augmentent, la résistance mécanique diminue, la température de jonction augmente, le rapport d'amplification du courant du transistor augmente rapidement, ce qui entraîne une augmentation du courant du collecteur. , la température de jonction augmente encore et enfin la défaillance des composants.Explication des termes appropriés :Température de jonction : température réelle d'un semi-conducteur dans un appareil électronique. En fonctionnement, elle est généralement supérieure à la température du boîtier de l'emballage et la différence de température est égale au flux de chaleur multiplié par la résistance thermique. Convection libre (convection naturelle) : Rayonnement (rayonnement) : Air forcé (refroidissement du gaz) : Liquide forcé (refroidissement du gaz) : Liquide Évaporation : Surface Environnement EnvironnementConsidérations simples courantes pour la conception thermique :1 Des méthodes de refroidissement simples et fiables telles que la conduction thermique, la convection naturelle et le rayonnement doivent être utilisées pour réduire les coûts et les pannes.2 Raccourcissez autant que possible le chemin de transfert de chaleur et augmentez la zone d'échange thermique.3 Lors de l'installation des composants, l'influence de l'échange thermique par rayonnement des composants périphériques doit être pleinement prise en compte, et les dispositifs thermosensibles doivent être tenus à l'écart de la source de chaleur ou trouver un moyen d'utiliser les mesures de protection de l'écran thermique pour isoler les composants de la source de chaleur.4 Il doit y avoir une distance suffisante entre l'entrée d'air et l'orifice d'échappement pour éviter le reflux d'air chaud.5 La différence de température entre l'air entrant et l'air sortant doit être inférieure à 14°C.6 Il convient de noter que la direction de la ventilation forcée et de la ventilation naturelle doit être autant que possible cohérente.7 Les appareils à forte chaleur doivent être installés aussi près que possible de la surface qui est facile à dissiper la chaleur (telle que la surface intérieure du boîtier métallique, la base métallique et le support métallique, etc.), et il y a une bonne conduction thermique de contact entre la surface.8 La partie alimentation du tube haute puissance et la pile du pont redresseur appartiennent au dispositif de chauffage, il est préférable de l'installer directement sur le boîtier pour augmenter la zone de dissipation thermique. Dans la disposition de la carte imprimée, davantage de couches de cuivre doivent être laissées sur la surface de la carte autour du plus grand transistor de puissance pour améliorer la capacité de dissipation thermique de la plaque inférieure.9 Lorsque vous utilisez la convection libre, évitez d'utiliser des dissipateurs thermiques trop denses.10 La conception thermique doit être prise en compte pour garantir que la capacité de transport de courant du fil et le diamètre du fil sélectionné doivent être adaptés à la conduction du courant, sans provoquer une augmentation de température et une chute de pression supérieures à celles autorisées.11 Si la répartition de la chaleur est uniforme, l'espacement des composants doit être uniforme pour que le vent circule uniformément à travers chaque source de chaleur.12 Lorsque vous utilisez un refroidissement par convection forcée (ventilateurs), placez les composants sensibles à la température le plus près de l'entrée d'air.13 L'utilisation d'un équipement de refroidissement par convection libre pour éviter de disposer d'autres pièces au-dessus des pièces à forte consommation d'énergie, l'approche correcte doit être une disposition horizontale inégale.14 Si la répartition de la chaleur n'est pas uniforme, les composants doivent être disposés de manière clairsemée dans la zone à forte génération de chaleur, et la disposition des composants dans la zone à faible génération de chaleur doit être légèrement plus dense, ou ajouter une barre de dérivation, de sorte que l'énergie éolienne peut circuler efficacement vers les principaux appareils de chauffage.15 Le principe de conception structurelle de l'entrée d'air : d'une part, essayer de minimiser sa résistance au flux d'air, d'autre part, considérer la prévention de la poussière et considérer globalement l'impact des deux.16 Les composants de consommation électrique doivent être espacés autant que possible.17 Évitez de regrouper les pièces sensibles à la température ou de les disposer à côté de pièces à forte consommation d'énergie ou de points chauds.18 L'utilisation d'un équipement de refroidissement par convection libre pour éviter de disposer d'autres pièces au-dessus des pièces à forte consommation d'énergie, la pratique correcte doit être une disposition horizontale inégale.
Test combiné IEC-60068-2 de condensation, de température et d'humiditéDifférence entre les spécifications des tests de chaleur humide IEC60068-2Dans la spécification IEC60068-2, il existe un total de cinq types de tests de chaleur humide, en plus des tests courants de 85 ℃/85 % R.H., 40 ℃/93 % R.H. En plus de la température et de l'humidité élevées à point fixe, il existe deux autres tests spéciaux [IEC60068-2-30, IEC60068-2-38], ces deux cycles alternant humide et humide et un cycle combiné de température et d'humidité, donc le test Le processus modifiera la température et l'humidité, et même plusieurs groupes de liens et de cycles de programme, appliqués aux semi-conducteurs, pièces, équipements IC, etc. Pour simuler le phénomène de condensation extérieure, évaluez la capacité du matériau à empêcher la diffusion d'eau et de gaz et accélèrez la durée de vie du produit. tolérance à la détérioration, les cinq spécifications ont été organisées dans un tableau comparatif des différences entre les spécifications des tests humides et thermiques, et les points de test ont été expliqués en détail pour le test en cycle combiné humide et thermique, ainsi que les conditions et points de test de GJB dans les tests humides et thermiques ont été complétés.Test de cycle de chaleur humide alterné IEC60068-2-30Ce test utilise la technique de test consistant à maintenir l'humidité et la température en alternance pour faire pénétrer l'humidité dans l'échantillon et provoquer de la condensation (condensation) sur la surface du produit à tester, afin de confirmer l'adaptabilité du composant, de l'équipement ou d'autres produits dans utilisation, transport et stockage sous la combinaison de changements cycliques d'humidité élevée et de température et d'humidité. Cette spécification convient également aux grands échantillons de test. Si l'équipement et le processus de test doivent conserver les composants de chauffage de puissance pour ce test, l'effet sera meilleur que celui de la norme IEC60068-2-38, la température élevée utilisée dans ce test en a deux (40 ° C, 55 ° C), la 40 ° C doit répondre à la plupart des environnements à haute température du monde, tandis que 55 ° C répondent à tous les environnements à haute température du monde, les conditions de test sont également divisées en [cycle 1, cycle 2], en termes de gravité, [Cycle 1] est supérieur au [Cycle 2].Adapté aux produits secondaires : composants, équipements, divers types de produits à testerEnvironnement de test : la combinaison de changements cycliques d'humidité élevée et de température produit de la condensation, et trois types d'environnements peuvent être testés [utilisation, stockage, transport ([l'emballage est facultatif)]Test de stress : la respiration provoque l’invasion de la vapeur d’eauSi l'alimentation est disponible: ouiNe convient pas pour : les pièces trop légères et trop petitesProcessus de test et inspection et observation post-test : vérifiez les changements électriques après l'humidité [ne retirez pas l'inspection intermédiaire]Conditions de test : Humidité : 95 % H.R. [Changement de température après maintien d'une humidité élevée] (basse température 25 ± 3 ℃ ← → haute température 40 ℃ ou 55 ℃)Vitesse de montée et de refroidissement : chauffage (0,14 ℃/min), refroidissement (0,08 ~ 0,16 ℃/min)Cycle 1 : Lorsque l'absorption et les effets respiratoires sont des caractéristiques importantes, l'échantillon testé est plus complexe [humidité non inférieure à 90 % H.R.]Cycle 2 : En cas d'absorption et d'effets respiratoires moins évidents, l'échantillon à tester est plus simple [l'humidité n'est pas inférieure à 80 % H.R.]Tableau de comparaison des différences de spécifications de test de chaleur humide IEC60068-2Pour les produits de pièces de type composant, une méthode de test combinée est utilisée pour accélérer la confirmation de la résistance de l'échantillon de test à la dégradation dans des conditions de température, d'humidité élevée et de basse température. Cette méthode de test est différente des défauts du produit causés par la respiration [rosée, absorption d'humidité] de la norme IEC60068-2-30. La sévérité de ce test est supérieure à celle des autres tests de cycle de chaleur humide, car il y a plus de changements de température et de [respiration] pendant le test, la plage de température du cycle est plus grande [de 55℃ à 65℃] et le taux de changement de température du cycle de température est plus rapide [montée en température : 0,14°C/min devient 0,38°C/min, 0,08°C/min devient 1,16°C/min], en outre, différent du cycle général de chaleur humide, le cycle basse température Une condition de -10 ° C est ajoutée pour accélérer le rythme respiratoire et faire geler l'eau condensée dans l'espace du substitut, ce qui est la caractéristique de cette spécification de test. Le processus de test permet le test de puissance et le test de puissance de charge appliquée, mais il ne peut pas affecter les conditions de test (fluctuation de température et d'humidité, taux de montée et de refroidissement) en raison du chauffage du produit secondaire après la mise sous tension. En raison du changement de température et d'humidité pendant le processus de test, il ne peut pas y avoir de gouttelettes d'eau de condensation sur le dessus de la chambre de test vers le produit secondaire.Convient aux produits secondaires : composants, étanchéité des composants métalliques, étanchéité des extrémités de plombEnvironnement de test : combinaison de conditions de température élevée, d’humidité élevée et de basse températureTest de stress : respiration accélérée + eau geléeS'il peut être alimenté : il peut être alimenté et une charge électrique externe (cela ne peut pas affecter les conditions de la chambre d'essai en raison du chauffage électrique)Non applicable : Ne peut remplacer la chaleur humide et la chaleur humide alternée, ce test est utilisé pour produire des défauts différents de la respirationProcessus de test et inspection et observation post-test : vérifiez les changements électriques après l'humidité [vérifiez dans des conditions d'humidité élevée et retirez après le test]Conditions de test : cycle de chaleur humide (25 s'il vous plaît - 65 + 2 ℃ / 93 + / - 3% R.H.) s'il vous plaît - cycle basse température (25 s'il vous plaît - 65 + 2 ℃ / 93 + 3% R.H. - - 10 + 2 ℃) X5cycle = 10 cyclesVitesse de montée et de refroidissement : chauffage (0,38 ℃/min), refroidissement (1,16 ℃/min)Cycle de chaleur et d'humidité (25←→65±2℃/93±3%R.H.)Cycle à basse température (25←→65±2℃/93±3%R.H. →-10±2℃)Test de chaleur humide GJB150-09Instructions : Le test humide et thermique du GJB150-09 vise à confirmer la capacité de l'équipement à résister à l'influence d'une atmosphère chaude et humide, adapté aux équipements stockés et utilisés dans des environnements chauds et humides, aux équipements sujets à une humidité élevée ou aux équipements pouvant ont des problèmes potentiels liés à la chaleur et à l’humidité. Des endroits chauds et humides peuvent se produire tout au long de l'année sous les tropiques, de façon saisonnière aux latitudes moyennes et dans les équipements soumis à des changements combinés de pression, de température et d'humidité, avec un accent particulier sur 60 °C/95 % d'humidité relative. Cette température et cette humidité élevées ne se produisent pas dans la nature et ne simulent pas non plus l'effet d'humidité et de chaleur après le rayonnement solaire, mais elles peuvent détecter les parties de l'équipement présentant des problèmes potentiels, mais elles ne peuvent pas reproduire l'environnement complexe de température et d'humidité, évaluer le effet à long terme et ne peut pas reproduire l’impact de l’humidité lié à l’environnement à faible humidité.Équipement approprié pour les tests de cycle combiné de condensation, de congélation humide et de chaleur humide : chambre d'essai à température et humidité constantes
AEC-Q100 - Mécanisme de défaillance basé sur la certification des tests de résistance des circuits intégrésAvec les progrès de la technologie électronique automobile, il existe de nombreux systèmes de contrôle de gestion de données complexes dans les voitures d'aujourd'hui, et via de nombreux circuits indépendants, pour transmettre les signaux requis entre chaque module, le système à l'intérieur de la voiture ressemble à « l'architecture maître-esclave » de le réseau informatique, dans l'unité de commande principale et chaque module périphérique, les pièces électroniques automobiles sont divisées en trois catégories. Y compris les circuits intégrés, les semi-conducteurs discrets et les composants passifs, trois catégories, afin de garantir que ces composants électroniques automobiles répondent aux normes les plus élevées de l'anquan automobile, l'American Automotive Electronics Association (AEC, The Automotive Electronics Council est un ensemble de normes [AEC-Q100] conçu pour les pièces actives [microcontrôleurs et circuits intégrés...] et [[AEC-Q200] conçu pour les composants passifs, qui spécifie la qualité et la fiabilité du produit qui doivent être atteintes pour les pièces passives. Aec-q100 est la norme de test de fiabilité des véhicules formulée. par l'organisation AEC, qui constitue une entrée importante pour les fabricants de 3C et de circuits intégrés dans le module d'usine automobile internationale, et également une technologie importante pour améliorer la qualité de fiabilité des circuits intégrés de Taiwan. De plus, l'usine automobile internationale a passé la norme anquan (ISO). -26262). AEC-Q100 est l’exigence de base pour réussir cette norme.Liste des pièces électroniques automobiles requises pour passer l'AECQ-100 :Mémoire jetable automobile, régulateur abaisseur d'alimentation, photocoupleur automobile, capteur accéléromètre à trois axes, dispositif vidéo Jiema, redresseur, capteur de lumière ambiante, mémoire ferroélectrique non volatile, circuit intégré de gestion de l'alimentation, mémoire flash intégrée, régulateur DC/DC, véhicule dispositif de communication réseau de jauge, circuit intégré de pilote LCD, amplificateur différentiel d'alimentation unique, interrupteur de proximité capacitif désactivé, pilote de LED haute luminosité, commutateur asynchrone, circuit intégré 600 V, circuit intégré GPS, puce de système avancé d'aide à la conduite ADAS, récepteur GNSS, amplificateur frontal GNSS. .. Attendons.Catégories et tests AEC-Q100 :Description : Spécification AEC-Q100 7 grandes catégories, un total de 41 testsGroupe A- TESTS DE STRESS ENVIRONNEMENT ACCÉLÉRÉS se compose de 6 tests : PC, THB, HAST, AC, UHST, TH, TC, PTC, HTSLGroupe B - TESTS DE SIMULATION ACCÉLÉRÉS À VIE se compose de trois tests : HTOL, ELFR et EDRLES TESTS D'INTÉGRITÉ DE L'ASSEMBLAGE DU COLIS se composent de 6 tests : WBS, WBP, SD, PD, SBS, LIGroupe D- Le test de FIABILITÉ DE FABRICATION DES MATRICES se compose de 5 TESTS : EM, TDDB, HCI, NBTI, SMLe groupe TESTS DE VÉRIFICATION ÉLECTRIQUE se compose de 11 tests, dont TEST, FG, HBM/MM, CDM, LU, ED, CHAR, GL, EMC, SC et SER.TESTS DE DÉPISTAGE des défauts F du cluster : 11 tests, dont : PAT, SBALes TESTS D'INTÉGRITÉ DU PACKAGE CAVITY se composent de 8 tests, dont : MS, VFV, CA, GFL, DROP, LT, DS, IWV.Brève description des éléments de test :Climatisation : AutocuiseurCA : accélération constanteCDM : mode appareil chargé par décharge électrostatiqueCHAR : indique la description de la fonctionnalitéDROP : le colis tombeDS : test de cisaillement des copeauxED : Distribution électriqueEDR : durabilité du stockage non sujette aux pannes, conservation des données, durée de vieELFR : taux d’échec en début de vieEM : électromigrationCEM : Compatibilité électromagnétiqueFG : niveau de défautGFL : test de fuite d'air grossier/finGL : Fuite de grille causée par un effet thermoélectriqueHBM : indique le mode humain de décharge électrostatiqueHTSL : durée de conservation à haute températureHTOL : durée de vie à haute températureHCL : effet d'injection de porteur chaudIWV : Test hygroscopique interneLI : intégrité des brochesLT : Test de couple du couvercleLU : effet de verrouillageMM : indique le mode mécanique de décharge électrostatiqueMS : Choc mécaniqueNBTI : instabilité de température à biais richePAT : test de moyenne de processusPC : prétraitementPD : taille physiquePTC : cycle de température de puissanceSBA : Analyse statistique du rendementSBS : cisaillement de billes d'étainSC : fonction de court-circuitSD : soudabilitéSER : taux d'erreur logicielSM : Migration des contraintesTC : cycle de températureTDDB : Temps de claquage diélectriqueTEST : Paramètres de fonction avant et après stress testTH : humidité et chaleur sans parti prisTHB, HAST : tests de température, d'humidité ou de stress hautement accélérés avec biais appliquésUHST : test de résistance à haute accélération sans biaisVFV : vibration aléatoireWBS : coupe au fil de soudureWBP : tension du fil de soudureConditions de test de température et d'humidité finition :THB (température et humidité avec polarisation appliquée, selon JESD22 A101) : 85℃/85%R.H./1000h/biasHAST (test de contrainte hautement accéléré selon JESD22 A110) : 130℃/85%R.H./96h/bias, 110℃/85%R.H./264h/biasAutocuiseur AC, selon JEDS22-A102 : 121 ℃/100%R.H./96hUHST Test de contrainte à haute accélération sans biais, selon JEDS22-A118, équipement : HAST-S) : 110℃/85%R.H./264hTH chaleur humide sans biais, selon JEDS22-A101, équipement : THS) : 85℃/85%R.H./1000hTC(cycle de température, selon JEDS22-A104, équipement : TSK, TC) :Niveau 0 : -50℃←→150℃/2000cyclesNiveau 1 : -50℃←→150℃/1000cyclesNiveau 2 : -50℃←→150℃/500cyclesNiveau 3 : -50℃←→125℃/500cyclesNiveau 4 : -10℃←→105℃/500cyclesPTC (cycle de température de puissance, selon JEDS22-A105, équipement : TSK) :Niveau 0 : -40℃←→150℃/1000cyclesNiveau 1 : -65℃←→125℃/1000cyclesNiveau 2 à 4 : -65℃←→105℃/500cyclesHTSL(Durée de conservation haute température, JEDS22-A103, appareil : FOUR) :Pièces d'emballage en plastique : Grade 0 : 150 ℃/2000hCatégorie 1 : 150 ℃/1000hGrade 2 à 4 : 125 ℃/1000h ou 150℃/5000hPièces d'emballage en céramique : 200 ℃/72hHTOL (Durée de vie haute température, JEDS22-A108, équipement : FOUR) :Catégorie 0 : 150 ℃/1000hClasse 1 : 150℃/408h ou 125℃/1000hNiveau 2 : 125 ℃/408h ou 105 ℃/1000hNiveau 3 : 105 ℃/408h ou 85 ℃/1000hClasse 4 :90℃/408h ou 70℃/1000h ELFR (taux d'échec en début de vie, AEC-Q100-008) : Les appareils qui réussissent ce test de résistance peuvent être utilisés pour d'autres tests de résistance, les données générales peuvent être utilisées et les tests avant et après ELFR sont effectués dans des conditions de température douces et élevées.