bannière
Maison

Four de précision

Four de précision

  • Customized Solution for Double-Door Temperature Test Equipment
    Oct 25, 2025
    1.Core customization requirement analysis 1.1 The standard box size or load-bearing capacity (such as automotive parts, large unmanned aerial vehicles, and entire cabinet servers) cannot meet the requirements. Special sample racks, trays or suspension devices are required. The test samples need to be powered on and run inside the box, and connected to cables or pipes (such as battery pack charge and discharge tests, engine component tests). Oil stains, particulate matter or corrosive gases may be released during the sample testing process. 1.2 It needs to be connected with mechanical arms and AGV carts to achieve automatic loading and unloading. The heating and cooling rates required far exceed the standard specifications (such as >15°C/min). 1.3 The equipment needs to adapt to specific room sizes, door opening sizes or floor heights. There are special requirements for the power supply (if it cannot meet 380V) and the cooling water source (if a cooling tower cannot be provided).   2. Key customized technical specifications 2.1 Customized Dimensions The internal effective space is determined entirely based on the size and quantity of the customer's samples. The minimum distance between the sample and the box wall needs to be considered to ensure uniform airflow. It is necessary to clearly define the size of the door, the material of the sealing strip, the door lock mechanism (mechanical lock, pneumatic auxiliary lock), and the size and quantity of the observation window. The inner box is usually made of SUS304 stainless steel. The outer box body can be made of high-quality steel plate with plastic spraying or SUS304. For corrosive tests, more durable materials should be specified. Test holes are used for leads. The size, quantity and position of the hole diameters (such as left or right) need to be customized, and sealing plugs or flanges should be provided. 2.2 Confirm the test interval The technical index standards for temperature are usually from -70°C to +150°C. The standard heating and cooling rate is 1 to 3°C/min. Linear rapid temperature change: 5 to 10°C/min. Nonlinear rapid temperature change: Customizable to 15°C/min or even higher. This is directly related to the power configuration of the refrigeration and heating systems and is a key factor influencing the cost. Customize stricter control accuracy, such as uniformity ≤±1.0°C and fluctuation ≤±0.5°C. 2.3 Refrigeration System Air cooling: Suitable for sites where the ambient temperature is not high and the ventilation around the equipment is good. Water cooling: It is suitable for large cooling capacity, high heat generation samples, or situations with high ambient temperatures. It is more efficient but requires a cooling tower. Cascade refrigeration: It is used for low-temperature requirements below -40°C and usually adopts two-stage cascade. 2.4 Installation Method The refrigeration system of the integrated machine is located at the top or bottom of the box, with a compact structure and convenient installation. The split-type refrigeration unit is separated from the box body and is suitable for high-power equipment. It can discharge noise and heat to the outside, but the installation is complex. 2.5 Control System and Software The controller customizes the size and brand of the color touch screen, supports multi-segment programming, program group loops, step jumps, etc. Customized LAN interface for connecting to the upper computer (computer) for data monitoring and recording. Whether it is necessary to support remote network monitoring and operation, as well as customize record intervals and storage capacity. 2.6 Independent sample over-temperature protector. Compressor overheat, overcurrent and overpressure protection; Fan overcurrent protection Cooling water cut-off protection and automatic stop test function when the door is opened; Leakage or short-circuit protection; Sound and light alarm prompt.   Customizing double-door temperature test equipment is a systematic project. The key to success lies in the clarification and refinement of the initial requirements. A detailed and unambiguous "Technical Requirements Document" serves as the cornerstone for communication between equipment suppliers and customers. It ensures that the final delivered equipment fully complies with testing, process, and site requirements, avoiding subsequent disputes and cost overruns.
    EN SAVOIR PLUS
  • Lab Aging Test Chamber Working Principle
    Oct 17, 2025
    Many products (such as rubber, plastic, insulating materials, electronic components, etc.) will age due to the combined effects of heat and oxygen when exposed to the natural environment over a long period of use, such as becoming hard, brittle, cracking, and experiencing a decline in performance. This process is very slow in its natural state. The air-exchange aging test chamber greatly accelerates the aging process by creating a continuously high-temperature environment and constantly replenishing fresh air in the laboratory, thereby evaluating the long-term heat aging resistance of materials in a short period of time.   The working principle of Lab aging test chamber mainly relies on the collaborative efforts of three systems: 1. The heating system provides and maintains a high-temperature environment inside the test chamber. High-performance electric heaters are usually adopted and installed at the bottom, back or in the air duct of the test chamber. After the controller sets the target temperature (for example, 150°C), the heater starts to work. The air is blown through the heater by a high-power fan. The heated air is forced to circulate inside the box, causing the temperature inside the box to rise evenly and remain at the set value. 2. The ventilation system is the key that distinguishes it from ordinary ovens. At high temperatures, the sample will undergo an oxidation reaction with oxygen in the air, consuming oxygen and generating volatile products. If the air is not exchanged, the oxygen concentration inside the box will decrease, the reaction will slow down, and it may even be surrounded by the products of the sample's own decomposition. This is inconsistent with the actual usage of the product in a naturally ventilated environment. 3. The control system precisely controls the parameters of the entire testing process. The PID (Proportional-integral-Derivative) intelligent control mode is adopted. The real-time temperature is fed back through the temperature sensor inside the box (such as platinum resistance PT100). The controller precisely adjusts the output power of the heater to ensure that the temperature fluctuation is extremely small and remains stable at the set value. Set the air exchange volume within a unit of time (for example, 50 air changes per hour). This is one of the core parameters of the air-exchange aging test chamber, which usually follows relevant test standards (such as GB/T, ASTM, IEC, etc.).   The test chamber creates a high-temperature environment through electric heaters, achieves uniform temperature inside the box by using centrifugal fans, and continuously expels exhaust gases and draws in fresh air through a unique ventilation system. Thus, under controllable experimental conditions, it simulates and accelerates the aging process of materials in a naturally ventilated thermal and oxygen environment. The biggest difference between it and a common oven lies in its "ventilation" function, which enables its test results to more truly reflect the heat aging resistance of the material during long-term use.
    EN SAVOIR PLUS
  • Lab Thermal Resistance Sensing Core Working Principle
    Oct 16, 2025
    The core of the thermal resistance induction in high and low temperature test chambers also utilizes the physical property that the resistance value of platinum metal changes with temperature. The core logic of the control system is a closed-loop feedback control: measurement → comparison → regulation → stability   Firstly, the thermal resistance sensor senses the current temperature inside the chamber and converts it into a resistance value. The measurement circuit then converts the resistance value into a temperature signal and transmits it to the controller of the test chamber. The controller compares this measured temperature with the target temperature set by the user and calculates the deviation value. Subsequently, the controller outputs instructions to the actuator (such as the heater, compressor, liquid nitrogen valve, etc.) based on the magnitude and direction of the deviation. If the measured temperature is lower than the target temperature, start the heater to heat up; otherwise, start the refrigeration system to cool down. Through such continuous measurement, comparison and adjustment, the temperature inside the box is eventually stabilized at the target temperature set by the user and the required accuracy is maintained.   Due to the fact that high and low temperature test chambers need to simulate extreme and rapidly changing temperature environments (such as cycles from -70°C to +150°C), the requirements for thermal resistance sensors are much higher than those for ordinary industrial temperature measurement.   Meanwhile, there is usually more than one sensor inside the high and low temperature test chamber. The main control sensor is usually installed in the working space of the test chamber, close to the air outlet or at a representative position. It is the core of temperature control. The controller decides on heating or cooling based on its readings to ensure that the temperature in the working area meets the requirements of the test program. The monitoring sensors may be installed at other positions inside the box to verify with the main control sensors, thereby enhancing the reliability of the system. Over-temperature protection is independent of the main control system. When the main control system fails and the temperature exceeds the safety upper limit (or lower limit), the monitoring sensor will trigger an independent over-temperature protection circuit, immediately cutting off the heating (or cooling) power supply to protect the test samples and equipment safety. This is a crucial safety function.   Lab thermal resistance sensor is a precision component that integrates high-precision measurement, robust packaging, and system safety monitoring. It serves as the foundation and "sensory organ" for the entire test chamber to achieve precise and reliable temperature field control.
    EN SAVOIR PLUS
  • Lab Dust Free Oven Environmental Test Condition
    Oct 11, 2025
    Internal environmental conditions Benchmark cleanliness: At the beginning of the test, the chamber must reach the highest cleanliness level it claims (such as ISO Class 5 / Class 100). This is the premise of all tests. Before the test, the oven needs to run a long period of "self-cleaning" until the particle count shows that the concentration is stable below the standard for multiple consecutive times. Temperature and Humidity: Although the oven is a heating device, its initial state needs to be clearly defined. The initial environment for testing is usually normal temperature and humidity, for example, a temperature of 20±5°C and a relative humidity of 30-60% RH. This is crucial for testing the heating time and temperature uniformity. If the process has requirements for the dew point of the environment, it may be necessary to record the initial absolute humidity. Airflow state: The test should be conducted under the specified airflow pattern, typically in a vertical or horizontal laminar flow state. The fan must operate at the rated speed, with stable air pressure and air volume. Test load: The test is divided into two conditions: no-load and full-load. No-load is the benchmark test for equipment performance. Fill the effective working space with a fully loaded simulated load (such as metal, pallets, etc.) to simulate the harshest working conditions. Full-load testing can truly reflect the impact of products on air flow and temperature fields in actual production.   External environmental conditions 1. The cleanliness level of the external environment must be lower than or equal to the cleanliness level designed by the oven itself. For instance, when testing an oven of Class 100, it is best to do it in a room of Class 1000 or cleaner. If the external environment is too dirty, it will seriously interfere with the measurement results of the internal cleanliness of the oven when opening and closing the door or when water seeps through gaps. 2. The laboratory requires a stable temperature and humidity environment. It is generally recommended to conduct the test under standard laboratory conditions, such as 23±2°C and 50±10% RH. Avoid testing in extreme or highly volatile environments. 3. The test area should be free of strong convective winds and it is best to maintain a slight positive pressure to prevent external contaminants from entering the test area. 4. The power supply voltage and frequency should be stable within the range required by the equipment. 5. The equipment should be placed on a ground or base with less vibration. There are no large stamping equipment, fans or other strong vibration sources around.   When testing a dust-free oven, controlling the external environment is as important as measuring the internal environment. An unstable, dirty or strongly interfering external environment can lead to distorted test data and fail to truly reflect the performance of the equipment. All test conditions should be clearly recorded in the final verification report to ensure the traceability and repeatability of the tests.
    EN SAVOIR PLUS
  • Construire un environnement de test de chambre d'essai sûr
    Sep 16, 2025
    La clé pour créer un environnement de test sûr pour le laboratoire chambre d'essai à haute et basse température Il s’agit de garantir la sécurité des personnes, la sécurité des équipements, la sécurité des pièces d’essai et l’exactitude des données.1. Considérations relatives à la sécurité personnelleAvant d'ouvrir la porte de la chambre haute température pour prélever l'échantillon, il est nécessaire de porter un équipement de protection résistant aux hautes et basses températures. Lors d'opérations susceptibles de provoquer des éclaboussures ou des fuites de gaz extrêmement chauds ou froids, il est recommandé de porter un masque ou des lunettes de protection.La chambre d'essai doit être installée dans un laboratoire bien ventilé et éviter de travailler dans un espace confiné. Les essais à haute température peuvent libérer des substances volatiles de la pièce d'essai. Une bonne ventilation peut empêcher l'accumulation de gaz nocifs.Assurez-vous que les spécifications du cordon d'alimentation sont conformes aux exigences de l'équipement et que le fil de terre est correctement connecté. Surtout, il est strictement interdit de toucher les fiches d'alimentation, les interrupteurs et les échantillons avec les mains mouillées afin d'éviter tout risque d'électrocution. 2. Installer correctement l'équipementLa distance de sécurité minimale spécifiée par le fabricant (généralement au moins 50 à 100 centimètres) doit être respectée à l'arrière, sur le dessus et sur les côtés de l'appareil afin d'assurer le bon fonctionnement du condenseur, du compresseur et des autres systèmes de dissipation thermique. Une mauvaise ventilation peut entraîner une surchauffe de l'appareil, une baisse de ses performances, voire un incendie.Il est recommandé de prévoir une ligne électrique dédiée à la chambre d'essai afin d'éviter de partager le même circuit avec d'autres équipements de forte puissance (tels que des climatiseurs et de gros instruments), ce qui peut provoquer des fluctuations de tension ou des déclenchements.Il est recommandé de maintenir une température ambiante de fonctionnement comprise entre 5 °C et 30 °C. Des températures ambiantes excessivement élevées augmenteront considérablement la charge du compresseur, entraînant une baisse de l'efficacité de la réfrigération et des dysfonctionnements. Veuillez noter que l'équipement ne doit pas être installé en plein soleil, à proximité de sources de chaleur ou dans des endroits soumis à de fortes vibrations. 3. Assurer la validité et la répétabilité des testsLes échantillons doivent être placés au centre de la chambre de travail, à l'intérieur de la boîte. Un espace suffisant doit être prévu entre les échantillons et entre eux et la paroi de la boîte (un espace généralement supérieur à 50 mm est recommandé) pour assurer une circulation d'air fluide et une température uniforme et stable.Après avoir effectué des tests à haute température et à haute humidité (par exemple dans une chambre à température et humidité constantes), si des tests à basse température sont nécessaires, des opérations de déshumidification doivent être effectuées pour éviter la formation excessive de glace à l'intérieur de la chambre, ce qui pourrait affecter les performances de l'équipement.Il est strictement interdit de tester des substances inflammables, explosives, hautement corrosives et hautement volatiles, à l'exception des enceintes antidéflagrantes spécialement conçues à cet effet. Il est strictement interdit de placer des marchandises dangereuses telles que l'alcool et l'essence dans des enceintes ordinaires à haute et basse température. 4. Spécifications de fonctionnement de sécurité et procédures d'urgenceAvant utilisation, vérifiez que la porte du boîtier est bien fermée et que le verrouillage fonctionne correctement. Vérifiez que le boîtier est propre et exempt de tout corps étranger. Vérifiez que la courbe de température réglée (programme) est correcte.Pendant la période de test, il est nécessaire de vérifier régulièrement si l'état de fonctionnement de l'équipement est normal et s'il y a des bruits ou des alarmes anormaux.Normes de manipulation et de placement des échantillons : Porter des gants adaptés aux températures élevées et basses. Après avoir ouvert la porte, se tourner légèrement sur le côté pour éviter que la vague de chaleur ne frappe le visage. Retirer rapidement et soigneusement l'échantillon et le placer dans un endroit sûr.Intervention d'urgence : Familiarisez-vous avec l'emplacement du bouton d'arrêt d'urgence de l'équipement et avec la procédure de coupure rapide de l'alimentation électrique principale en cas d'urgence. Des extincteurs à dioxyde de carbone (adaptés aux incendies électriques) doivent être installés à proximité, plutôt que des extincteurs à eau ou à mousse.
    EN SAVOIR PLUS

laisser un message

laisser un message
Si vous êtes intéressé par nos produits et souhaitez en savoir plus, veuillez laisser un message ici, nous vous répondrons dès que possible.
soumettre

Maison

Des produits

WhatsApp

Contactez-nous