bannière
Maison

Chambre d'essai thermo-humidité

Chambre d'essai thermo-humidité

  • Double 85 Constant Temperature And Humidity Reliability Environmental Test (THB) Double 85 Constant Temperature And Humidity Reliability Environmental Test (THB)
    Jan 07, 2024
    Double 85 Constant Temperature And Humidity Reliability Environmental Test (THB) First, high temperature and humidity test WHTOL (Wet High Temperature Operating Life) is a common environmental stress acceleration test, usually 85℃ and 85% relative humidity, which is generally carried out in accordance with the standard IEC 60068-2-67-2019. The test conditions are shown in the chart. Second, the test principle "Double 85 test" is one of the reliability environmental tests, mainly used for constant temperature and humidity box, that is, the temperature of the box is set to 85℃, the relative humidity is set to 85%RH conditions, to accelerate the aging of the test product. Although the test process is simple, the test is an important method to evaluate many characteristics of the test product, so it has become an indispensable reliability environmental test condition in various industries. After aging the product under the condition of 85℃/85%RH, compare the performance changes of the product before and after aging, such as the photoelectric performance parameters of the lamp, the mechanical properties of the material, yellow index, etc., the smaller the difference, the better, so as to test the heat and moisture resistance of the product. The product may have thermal failure when working in a continuous high temperature environment, and some moisture sensitive devices will fail in a high humidity environment. The dual 85 test can test the thermal stress generated by the product under high humidity and its ability to resist long-term moisture penetration. For example, the frequent failure of various products in the humid weather period in the south is mainly due to the poor temperature and humidity resistance of the products. 3. Experimental factors In the LED lighting industry, many manufacturers have used the double 85 test results as an important means to judge the quality of lamps. Various possible reasons why LED lamps fail the dual 85 test are: 1. Lamp power supply: poor heat resistance of shell, danger of short circuit in circuit, failure of protection mechanism, etc. 2. Lamp structure: unreasonable design of heat dissipation body, installation problems, materials are not resistant to high temperature. 3. Lamp light source: poor moisture resistance, packaging adhesive aging, high temperature resistance. If you encounter a special use environment, such as the working environment temperature is severe, you need to test its high and low temperature resistance, the test method can refer to the high and low temperature test project. 4. Serve customers 01. Customer group LED lighting factory, LED power plant, LED packaging factory 02. Means of detection Constant temperature and humidity test chamber 03. Reference standards Constant temperature and humidity tests for electrical and electronic products -- Environmental testing -- Part 2: Test methods -- Test Cab: Constant temperature and humidity test GB/T 2423.3-2006. 04. Service content 4.1 Refer to the standard, conduct double 85 test on the product, and provide the third party's test results report. 4.2 Provide the analysis and improvement plan of the product through the double 85 test.
    EN SAVOIR PLUS
  • Reliability Test Reliability Test
    Jan 07, 2024
    Reliability Test AEC-Q102 Test Certification Fixed Damp Heat with Humidity Cycling (FMG), LED lamp reliability test method (GB/T 33721-2017), Component screening Ammonia test CAF test, Flame retardant grade Cyclic corrosion test (CCT), Mechanical shock test, High pressure cooker test (PCT), Highly Accelerated Stress Testing (HAST), High and low temperature and humidity test (THB), Hydrogen sulfide test (H2S), Liquid tank thermal shock test (TMSK), Component humidity sensitive grade test (MSL), Screening for high reliability use Hot flash test + acoustic sweep screening for high reliability use (MSL+SAT), LED luminaires reliability test scheme, Vibration test (VVF), Temperature cycle/thermal shock test (TC/TS), LED red Ink test UV aging test, LED light source anti-vulcanization test, Double 85 constant temperature and humidity reliability environmental test (THB), Salt spray test check.
    EN SAVOIR PLUS
  • Test de fiabilité des tablettes Test de fiabilité des tablettes
    Oct 16, 2024
    Test de fiabilité des tablettesUn ordinateur tablette, également connu sous le nom d'ordinateur personnel tablette (tablette PC), est un petit ordinateur personnel portable qui utilise un écran tactile comme périphérique d'entrée de base. C'est un produit électronique à forte mobilité, et on le voit partout dans la vie (comme les gares d'attente, les trains, les trains à grande vitesse, les cafés, les restaurants, les salles de réunion, les banlieues, etc.). Les gens ne portent qu'une simple protection de manteau ou même pas, afin de faciliter l'utilisation, la conception réduit la taille, de sorte qu'elle puisse être directement placée dans la poche ou le sac à main, le sac à dos, mais la tablette en train de se déplacer connaîtra également de nombreuses changements physiques environnementaux (tels que température, humidité, vibration, impact, extrusion, etc.). Etc.) et les dommages naturels (tels que la lumière ultraviolette, la lumière du soleil, la poussière, le brouillard salin, les gouttelettes d'eau... Cela provoquera également des blessures artificielles involontaires ou un fonctionnement anormal et un mauvais fonctionnement, et même provoquera des pannes et des dommages (tels que : produits chimiques ménagers, transpiration des mains, chute, insertion et retrait excessifs des terminaux, frottement des poches, clous en cristal... Ceux-ci réduiront la durée de vie de la tablette, afin d'assurer la fiabilité du produit et de prolonger la durée de vie pour l'améliorer, nous devons porter sur un certain nombre de projets de tests de fiabilité environnementale sur la tablette, les tests pertinents suivants pour votre référence.Description du projet d'essais environnementaux :Simuler divers environnements difficiles et évaluations de fiabilité utilisées par les tablettes électroniques pour tester si leurs performances répondent aux exigences ; Il comprend principalement le fonctionnement à haute et basse température et le stockage à haute et basse température, la température et la condensation, le cycle de température et les chocs, les tests de combinaison humide et thermique, les ultraviolets, la lumière du soleil, l'égouttement, la poussière, le brouillard salin et d'autres tests.Plage de température de fonctionnement : 0 ℃ ~ 35 ℃/5 % ~ 95 % RHPlage de température de stockage : -10 ℃ ~ 50 ℃/10 % ~ 90 % RH.Test de fonctionnement à basse température : -10 ℃/2h/fonctionnement électriqueTest de fonctionnement à haute température : 40℃/8h/tout en fonctionnementTest de stockage à basse température : -20 ℃/96h/arrêtTest de stockage à haute température : 60℃/96h/arrêtTest à haute température de stockage du véhicule : 85℃/96h/arrêtChoc thermique : -40℃(30min)←→80℃(30min)/10cycleTest de chaleur humide : 40℃/95%R.H./48h/veilleTest de cycle chaud et humide : 40℃/95%R.H./1h→rampe :1℃/min→-10℃/1h, 20 cycles, veilleTest de chaleur humide : 40℃/95%R.H./48h/veilleTest de cycle chaud et humide : 40℃/95%R.H./1h→rampe :1℃/min→-10℃/1h, 20 cycles, veilleTest de résistance aux intempéries :Simulation des conditions naturelles les plus sévères, test d'effet solaire thermique, chaque cycle de 24 heures, 8 heures d'exposition continue, 16 heures pour garder l'obscurité, chaque cycle de rayonnement de 8,96 kWh/m2, un total de 10 cycles.Essai au brouillard salin :Solution de chlorure de sodium à 5 %/Température de l'eau 35°C/PH 6,5~7,2/24h/Arrêt → Coque d'essuyage à l'eau pure →55°C/0,5h→ Test de fonctionnement : après 2 heures, après 40/80 %R.H./168h.Test d'égouttement : selon la norme IEC60529, conformément à l'indice d'étanchéité IPX2, peut empêcher les gouttelettes d'eau tombant à un angle inférieur à 15 degrés de pénétrer dans la tablette et de causer des dommages. Conditions de test : débit d'eau 3 mm/min, 2,5 min à chaque position, point de contrôle : après test, 24 heures plus tard, veille pendant 1 semaine.Test de poussière :Selon IEC60529, conformément à la classe de poussière IP5X, ne peut pas empêcher complètement l'entrée de poussière mais n'affecte pas l'appareil devrait être l'action et anquan, en plus des tablettes, il existe actuellement de nombreux produits 3C portables mobiles personnels couramment utilisés normes de poussière , tels que : téléphones portables, appareils photo numériques, MP3, MP4... Attendons.Conditions:Échantillon de poussière 110 mm/3 ~ 8 h/test pour un fonctionnement dynamiqueAprès le test, un microscope est utilisé pour détecter si des particules de poussière pénètrent dans l'espace intérieur de la tablette.Test de coloration chimique :Confirmer les composants externes liés à la tablette, confirmer la résistance chimique des produits chimiques ménagers, produits chimiques : crème solaire, rouge à lèvres, crème pour les mains, anti-moustique, huile de cuisson (huile de salade, huile de tournesol, huile d'olive... Etc), la durée du test est de 24 heures, vérifiez la couleur, la brillance, la douceur de la surface... Etc., et confirmez s'il y a des bulles ou des fissures.Essai mécanique :Tester la solidité de la structure mécanique de la tablette informatique et la résistance à l’usure des composants clés ; Comprend principalement le test de vibration, le test de chute, le test d'impact, le test de prise et le test d'usure... Etc.Test de chute : La hauteur de 130 cm, chute libre sur la surface lisse du sol, chaque côté est tombé 7 fois, 2 côtés au total 14 fois, tablette en état de veille, chaque chute, le fonctionnement du produit testé est vérifié.Test de chute répété : la hauteur de 30 cm, chute libre sur la surface lisse et dense de 2 cm d'épaisseur, chaque côté est tombé 100 fois, chaque intervalle de 2 s, 7 côtés au total 700 fois, toutes les 20 fois, vérifiez le fonctionnement du produit expérimental, la tablette est en état de pouvoir.Test de vibration aléatoire : fréquence 30 ~ 100 Hz, 2G, axial : trois axes. Temps : 1 heure dans chaque sens, pour un total de trois heures, la tablette est en mode veille.Test de résistance aux chocs de l'écran : Une boule de cuivre de 11φ/5,5 g est tombée sur la surface centrale d'un objet de 1 m à une hauteur de 1,8 m et une boule d'acier inoxydable de 3ψ/9 g est tombée à une hauteur de 30 cm.Durabilité de l’écriture sur écran : plus de 100 000 mots (largeur R0,8 mm, pression 250g)Durabilité de l’écran tactile : 1 million, 10 millions, 160 millions, 200 millions de fois ou plus (largeur R8mm, dureté 60°, pression 250g, 2 fois par seconde)Test de presse à plat sur écran : le diamètre du bloc de caoutchouc est de 8 mm, la vitesse de pression est de 1,2 mm/min, la direction verticale est de 5 kg, appuyez à plat sur la fenêtre 3 fois, à chaque fois pendant 5 secondes, l'écran doit s'afficher normalement.Test de presse à plat avant écran : Toute la zone de contact, la direction de la force verticale de 25 kg, appuyez à plat sur chaque côté de la tablette, pendant 10 secondes, appuyez à plat 3 fois, il ne devrait y avoir aucune anomalie.Prise des écouteurs et test de retrait : Insérez l'écouteur verticalement dans le trou de l'écouteur, puis retirez-le verticalement. Répétez ceci plus de 5000 foisTest de prise et de traction d'E/S : La tablette est en état de veille et le connecteur de la borne est retiré, un total de plus de 5 000 fois.Test de frottement de poche : Simulez divers matériaux dans une poche ou un sac à dos, la tablette est frottée à plusieurs reprises dans la poche 2 000 fois (le test de friction ajoutera également des particules de poussière mélangées, notamment des particules de poussière, des particules d'herbe yan, des peluches et des particules de papier pour le test de mélange).Test de dureté de l'écran : dureté supérieure à la classe 7 (ASTM D 3363, JIS 5400)Test d'impact sur écran : frapper les côtés et le centre les plus vulnérables du panneau avec une force supérieure à 5㎏ 
    EN SAVOIR PLUS
  • Cellule solaire de concentrateur Cellule solaire de concentrateur
    Oct 15, 2024
    Cellule solaire de concentrateurUne cellule solaire à concentration est une combinaison de [Concentrator Photovoltaic]+[Fresnel Lenes]+[Sun Tracker]. Son efficacité de conversion d'énergie solaire peut atteindre 31 % ~ 40,7 %, bien que l'efficacité de conversion soit élevée, mais en raison de la longue période d'exposition au soleil, elle a été utilisée dans l'industrie spatiale dans le passé et peut maintenant être utilisée dans la production d'électricité. industrie avec traqueur de lumière solaire, qui ne convient pas aux familles en général. Le matériau principal des cellules solaires à concentration est l'arséniure de gallium (GaAs), c'est-à-dire les trois matériaux du groupe cinq (III-V). Les matériaux généraux en cristaux de silicium ne peuvent absorber que l'énergie d'une longueur d'onde de 400 à 1 100 nm dans le spectre solaire, et le concentrateur est différent de la technologie solaire des plaquettes de silicium, grâce au semi-conducteur composé à jonctions multiples qui peut absorber une plus large gamme d'énergie du spectre solaire, et le le développement actuel de cellules solaires à concentrateur InGaP/GaAs/Ge à trois jonctions peut grandement améliorer l'efficacité de la conversion. La cellule solaire à concentration à trois jonctions peut absorber une énergie d'une longueur d'onde de 300 ~ 1 900 nm par rapport à son efficacité de conversion qui peut être considérablement améliorée, et la résistance thermique des cellules solaires à concentration est supérieure à celle des cellules solaires de type plaquette générales.
    EN SAVOIR PLUS
  • Zone de conduction de la chaleur Zone de conduction de la chaleur
    Oct 14, 2024
    Zone de conduction de la chaleurConductivité thermiqueC'est la conductivité thermique d'une substance, passant d'une température élevée à une température basse au sein de cette même substance. Également connu sous le nom de : conductivité thermique, conductivité thermique, conductivité thermique, coefficient de transfert thermique, transfert de chaleur, conductivité thermique, conductivité thermique, conductivité thermique, conductivité thermique.Formule de conductivité thermiquek = (Q/t) *L/(A*T) k : conductivité thermique, Q : chaleur, t : temps, L : longueur, A : surface, T : différence de température en unités SI, l'unité de conductivité thermique est W/(m*K), en unités impériales, correspond à Btu · pi/(h · pi2 · °F)Coefficient de transfert de chaleurEn thermodynamique, en génie mécanique et en génie chimique, la conductivité thermique est utilisée pour calculer la conduction thermique, principalement la conduction thermique de convection ou la transformation de phase entre fluide et solide, qui est définie comme la chaleur traversant l'unité de surface par unité de temps sous la différence de température unitaire, appelée coefficient de conduction thermique de la substance, si l'épaisseur de la masse de L, la valeur de mesure doit être multipliée par L, La valeur résultante est le coefficient de conductivité thermique, généralement noté k.Conversion unitaire du coefficient de conduction thermique1 (CAL) = 4,186 (j), 1 (CAL/s) = 4,186 (j/s) = 4,186 (W).L'impact de la température élevée sur les produits électroniques :L'augmentation de la température entraînera une diminution de la valeur de résistance de la résistance, mais réduira également la durée de vie du condensateur. De plus, la température élevée entraînera une diminution du transformateur, des performances des matériaux d'isolation associés et une température trop élevée. un niveau élevé entraînera également une modification de la structure de l'alliage du joint de soudure sur la carte PCB : l'IMC s'épaissit, les joints de soudure deviennent cassants, les moustaches d'étain augmentent, la résistance mécanique diminue, la température de jonction augmente, le rapport d'amplification du courant du transistor augmente rapidement, ce qui entraîne une augmentation du courant du collecteur. , la température de jonction augmente encore et enfin la défaillance des composants.Explication des termes appropriés :Température de jonction : température réelle d'un semi-conducteur dans un appareil électronique. En fonctionnement, elle est généralement supérieure à la température du boîtier de l'emballage et la différence de température est égale au flux de chaleur multiplié par la résistance thermique. Convection libre (convection naturelle) : Rayonnement (rayonnement) : Air forcé (refroidissement du gaz) : Liquide forcé (refroidissement du gaz) : Liquide Évaporation : Surface Environnement EnvironnementConsidérations simples courantes pour la conception thermique :1 Des méthodes de refroidissement simples et fiables telles que la conduction thermique, la convection naturelle et le rayonnement doivent être utilisées pour réduire les coûts et les pannes.2 Raccourcissez autant que possible le chemin de transfert de chaleur et augmentez la zone d'échange thermique.3 Lors de l'installation des composants, l'influence de l'échange thermique par rayonnement des composants périphériques doit être pleinement prise en compte, et les dispositifs thermosensibles doivent être tenus à l'écart de la source de chaleur ou trouver un moyen d'utiliser les mesures de protection de l'écran thermique pour isoler les composants de la source de chaleur.4 Il doit y avoir une distance suffisante entre l'entrée d'air et l'orifice d'échappement pour éviter le reflux d'air chaud.5 La différence de température entre l'air entrant et l'air sortant doit être inférieure à 14°C.6 Il convient de noter que la direction de la ventilation forcée et de la ventilation naturelle doit être autant que possible cohérente.7 Les appareils à forte chaleur doivent être installés aussi près que possible de la surface qui est facile à dissiper la chaleur (telle que la surface intérieure du boîtier métallique, la base métallique et le support métallique, etc.), et il y a une bonne conduction thermique de contact entre la surface.8 La partie alimentation du tube haute puissance et la pile du pont redresseur appartiennent au dispositif de chauffage, il est préférable de l'installer directement sur le boîtier pour augmenter la zone de dissipation thermique. Dans la disposition de la carte imprimée, davantage de couches de cuivre doivent être laissées sur la surface de la carte autour du plus grand transistor de puissance pour améliorer la capacité de dissipation thermique de la plaque inférieure.9 Lorsque vous utilisez la convection libre, évitez d'utiliser des dissipateurs thermiques trop denses.10 La conception thermique doit être prise en compte pour garantir que la capacité de transport de courant du fil et le diamètre du fil sélectionné doivent être adaptés à la conduction du courant, sans provoquer une augmentation de température et une chute de pression supérieures à celles autorisées.11 Si la répartition de la chaleur est uniforme, l'espacement des composants doit être uniforme pour que le vent circule uniformément à travers chaque source de chaleur.12 Lorsque vous utilisez un refroidissement par convection forcée (ventilateurs), placez les composants sensibles à la température le plus près de l'entrée d'air.13 L'utilisation d'un équipement de refroidissement par convection libre pour éviter de disposer d'autres pièces au-dessus des pièces à forte consommation d'énergie, l'approche correcte doit être une disposition horizontale inégale.14 Si la répartition de la chaleur n'est pas uniforme, les composants doivent être disposés de manière clairsemée dans la zone à forte génération de chaleur, et la disposition des composants dans la zone à faible génération de chaleur doit être légèrement plus dense, ou ajouter une barre de dérivation, de sorte que l'énergie éolienne peut circuler efficacement vers les principaux appareils de chauffage.15 Le principe de conception structurelle de l'entrée d'air : d'une part, essayer de minimiser sa résistance au flux d'air, d'autre part, considérer la prévention de la poussière et considérer globalement l'impact des deux.16 Les composants de consommation électrique doivent être espacés autant que possible.17 Évitez de regrouper les pièces sensibles à la température ou de les disposer à côté de pièces à forte consommation d'énergie ou de points chauds.18 L'utilisation d'un équipement de refroidissement par convection libre pour éviter de disposer d'autres pièces au-dessus des pièces à forte consommation d'énergie, la pratique correcte doit être une disposition horizontale inégale.
    EN SAVOIR PLUS
  • Dépistage des contraintes cycliques de température (2) Dépistage des contraintes cycliques de température (2)
    Oct 14, 2024
    Dépistage des contraintes cycliques de température (2)Introduction de paramètres de contrainte pour le dépistage des contraintes cycliques en température :Les paramètres de contrainte du dépistage des contraintes cycliques de température comprennent principalement les éléments suivants : plage extrême de températures élevées et basses, temps de séjour, variabilité de la température, numéro de cycle.Plage extrême de haute et basse température: plus la plage de température extrême haute et basse est grande, moins de cycles sont nécessaires, plus le coût est faible, mais ne peut pas dépasser la limite du produit, ne provoque pas de nouveau principe de défaut, la différence entre le Les limites supérieure et inférieure du changement de température ne sont pas inférieures à 88 °C, la plage de changement typique est de -54 °C à 55 °C.Temps de séjour : De plus, le temps de séjour ne peut pas être trop court, sinon il est trop tard pour que le produit testé produise des changements de contrainte de dilatation thermique et de contraction, comme pour le temps de séjour, le temps de séjour des différents produits est différent, vous peut se référer aux exigences des spécifications pertinentes.Nombre de cycles : Quant au nombre de cycles de dépistage des contraintes cycliques en température, il est également déterminé en tenant compte des caractéristiques du produit, de la complexité, des limites supérieures et inférieures de température et du taux de dépistage, et le nombre de dépistage ne doit pas être dépassé, sinon cela entraînerait nuire inutilement au produit et ne peut pas améliorer le taux de dépistage. Le nombre de cycles de température varie de 1 à 10 cycles [criblage ordinaire, criblage primaire] à 20 à 60 cycles [criblage de précision, criblage secondaire], pour l'élimination des défauts de fabrication les plus probables, environ 6 à 10 cycles peuvent être efficacement éliminés , en plus de l'efficacité du cycle de température, dépend principalement de la variation de température de la surface du produit, plutôt que de la variation de température à l'intérieur de la boîte de test.Il existe sept principaux paramètres influençant le cycle de température :(1) Plage de température(2) Nombre de cycles(3) Taux de température de Chang(4) Temps de séjour(5) Vitesses du flux d'air(6) Uniformité de la contrainte(7) Test de fonctionnement ou non (Condition de fonctionnement du produit)Classification de fatigue par dépistage des contraintes :La classification générale de la recherche sur la fatigue peut être divisée en fatigue de cycle élevé, fatigue de cycle faible et croissance de fissures de fatigue. En ce qui concerne la fatigue à faible cycle, elle peut être subdivisée en fatigue thermique et fatigue isotherme.Acronymes du dépistage du stress :ESS : analyse du stress environnementalFBT : Testeur de cartes fonctionnellesICA : Analyseur de circuitsTIC : Testeur de circuitsLBS : testeur de court-circuit de carte de chargeMTBF : temps moyen entre pannesTemps des cycles de température :a.MIL-STD-2164 (GJB 1302-90) : Dans le test d'élimination des défauts, le nombre de cycles de température est de 10, 12 fois, et dans la détection sans problème, il est de 10 à 20 fois ou de 12 à 24 fois. Afin d'éliminer les défauts de fabrication les plus probables, environ 6 à 10 cycles sont nécessaires pour les éliminer efficacement. 1 à 10 cycles [dépistage général, dépistage primaire], 20 à 60 cycles [dépistage de précision, dépistage secondaire].B.od-hdbk-344 (GJB/DZ34) L'équipement de dépistage initial et le niveau de l'unité utilisent 10 à 20 boucles (généralement ≧10), le niveau composant utilise 20 à 40 boucles (généralement ≧25).Variabilité de température :a.MIL-STD-2164(GJB1032) indique clairement : [Taux de changement de température du cycle de température 5℃/min]B.od-hdbk-344 (GJB/DZ34) Niveau composant 15 °C/min, système 5 °C/minc. Le dépistage des contraintes cycliques en température n'est généralement pas une variabilité de température spécifiée, et son taux de variation en degrés couramment utilisé est généralement de 5 °C/min.
    EN SAVOIR PLUS
  • Test combiné IEC-60068-2 de condensation, de température et d'humidité Test combiné IEC-60068-2 de condensation, de température et d'humidité
    Oct 14, 2024
    Test combiné IEC-60068-2 de condensation, de température et d'humiditéDifférence entre les spécifications des tests de chaleur humide IEC60068-2Dans la spécification IEC60068-2, il existe un total de cinq types de tests de chaleur humide, en plus des tests courants de 85 ℃/85 % R.H., 40 ℃/93 % R.H. En plus de la température et de l'humidité élevées à point fixe, il existe deux autres tests spéciaux [IEC60068-2-30, IEC60068-2-38], ces deux cycles alternant humide et humide et un cycle combiné de température et d'humidité, donc le test Le processus modifiera la température et l'humidité, et même plusieurs groupes de liens et de cycles de programme, appliqués aux semi-conducteurs, pièces, équipements IC, etc. Pour simuler le phénomène de condensation extérieure, évaluez la capacité du matériau à empêcher la diffusion d'eau et de gaz et accélèrez la durée de vie du produit. tolérance à la détérioration, les cinq spécifications ont été organisées dans un tableau comparatif des différences entre les spécifications des tests humides et thermiques, et les points de test ont été expliqués en détail pour le test en cycle combiné humide et thermique, ainsi que les conditions et points de test de GJB dans les tests humides et thermiques ont été complétés.Test de cycle de chaleur humide alterné IEC60068-2-30Ce test utilise la technique de test consistant à maintenir l'humidité et la température en alternance pour faire pénétrer l'humidité dans l'échantillon et provoquer de la condensation (condensation) sur la surface du produit à tester, afin de confirmer l'adaptabilité du composant, de l'équipement ou d'autres produits dans utilisation, transport et stockage sous la combinaison de changements cycliques d'humidité élevée et de température et d'humidité. Cette spécification convient également aux grands échantillons de test. Si l'équipement et le processus de test doivent conserver les composants de chauffage de puissance pour ce test, l'effet sera meilleur que celui de la norme IEC60068-2-38, la température élevée utilisée dans ce test en a deux (40 ° C, 55 ° C), la 40 ° C doit répondre à la plupart des environnements à haute température du monde, tandis que 55 ° C répondent à tous les environnements à haute température du monde, les conditions de test sont également divisées en [cycle 1, cycle 2], en termes de gravité, [Cycle 1] est supérieur au [Cycle 2].Adapté aux produits secondaires : composants, équipements, divers types de produits à testerEnvironnement de test : la combinaison de changements cycliques d'humidité élevée et de température produit de la condensation, et trois types d'environnements peuvent être testés [utilisation, stockage, transport ([l'emballage est facultatif)]Test de stress : la respiration provoque l’invasion de la vapeur d’eauSi l'alimentation est disponible: ouiNe convient pas pour : les pièces trop légères et trop petitesProcessus de test et inspection et observation post-test : vérifiez les changements électriques après l'humidité [ne retirez pas l'inspection intermédiaire]Conditions de test : Humidité : 95 % H.R. [Changement de température après maintien d'une humidité élevée] (basse température 25 ± 3 ℃ ← → haute température 40 ℃ ou 55 ℃)Vitesse de montée et de refroidissement : chauffage (0,14 ℃/min), refroidissement (0,08 ~ 0,16 ℃/min)Cycle 1 : Lorsque l'absorption et les effets respiratoires sont des caractéristiques importantes, l'échantillon testé est plus complexe [humidité non inférieure à 90 % H.R.]Cycle 2 : En cas d'absorption et d'effets respiratoires moins évidents, l'échantillon à tester est plus simple [l'humidité n'est pas inférieure à 80 % H.R.]Tableau de comparaison des différences de spécifications de test de chaleur humide IEC60068-2Pour les produits de pièces de type composant, une méthode de test combinée est utilisée pour accélérer la confirmation de la résistance de l'échantillon de test à la dégradation dans des conditions de température, d'humidité élevée et de basse température. Cette méthode de test est différente des défauts du produit causés par la respiration [rosée, absorption d'humidité] de la norme IEC60068-2-30. La sévérité de ce test est supérieure à celle des autres tests de cycle de chaleur humide, car il y a plus de changements de température et de [respiration] pendant le test, la plage de température du cycle est plus grande [de 55℃ à 65℃] et le taux de changement de température du cycle de température est plus rapide [montée en température : 0,14°C/min devient 0,38°C/min, 0,08°C/min devient 1,16°C/min], en outre, différent du cycle général de chaleur humide, le cycle basse température Une condition de -10 ° C est ajoutée pour accélérer le rythme respiratoire et faire geler l'eau condensée dans l'espace du substitut, ce qui est la caractéristique de cette spécification de test. Le processus de test permet le test de puissance et le test de puissance de charge appliquée, mais il ne peut pas affecter les conditions de test (fluctuation de température et d'humidité, taux de montée et de refroidissement) en raison du chauffage du produit secondaire après la mise sous tension. En raison du changement de température et d'humidité pendant le processus de test, il ne peut pas y avoir de gouttelettes d'eau de condensation sur le dessus de la chambre de test vers le produit secondaire.Convient aux produits secondaires : composants, étanchéité des composants métalliques, étanchéité des extrémités de plombEnvironnement de test : combinaison de conditions de température élevée, d’humidité élevée et de basse températureTest de stress : respiration accélérée + eau geléeS'il peut être alimenté : il peut être alimenté et une charge électrique externe (cela ne peut pas affecter les conditions de la chambre d'essai en raison du chauffage électrique)Non applicable : Ne peut remplacer la chaleur humide et la chaleur humide alternée, ce test est utilisé pour produire des défauts différents de la respirationProcessus de test et inspection et observation post-test : vérifiez les changements électriques après l'humidité [vérifiez dans des conditions d'humidité élevée et retirez après le test]Conditions de test : cycle de chaleur humide (25 s'il vous plaît - 65 + 2 ℃ / 93 + / - 3% R.H.) s'il vous plaît - cycle basse température (25 s'il vous plaît - 65 + 2 ℃ / 93 + 3% R.H. - - 10 + 2 ℃) X5cycle = 10 cyclesVitesse de montée et de refroidissement : chauffage (0,38 ℃/min), refroidissement (1,16 ℃/min)Cycle de chaleur et d'humidité (25←→65±2℃/93±3%R.H.)Cycle à basse température (25←→65±2℃/93±3%R.H. →-10±2℃)Test de chaleur humide GJB150-09Instructions : Le test humide et thermique du GJB150-09 vise à confirmer la capacité de l'équipement à résister à l'influence d'une atmosphère chaude et humide, adapté aux équipements stockés et utilisés dans des environnements chauds et humides, aux équipements sujets à une humidité élevée ou aux équipements pouvant ont des problèmes potentiels liés à la chaleur et à l’humidité. Des endroits chauds et humides peuvent se produire tout au long de l'année sous les tropiques, de façon saisonnière aux latitudes moyennes et dans les équipements soumis à des changements combinés de pression, de température et d'humidité, avec un accent particulier sur 60 °C/95 % d'humidité relative. Cette température et cette humidité élevées ne se produisent pas dans la nature et ne simulent pas non plus l'effet d'humidité et de chaleur après le rayonnement solaire, mais elles peuvent détecter les parties de l'équipement présentant des problèmes potentiels, mais elles ne peuvent pas reproduire l'environnement complexe de température et d'humidité, évaluer le effet à long terme et ne peut pas reproduire l’impact de l’humidité lié à l’environnement à faible humidité.Équipement approprié pour les tests de cycle combiné de condensation, de congélation humide et de chaleur humide : chambre d'essai à température et humidité constantes
    EN SAVOIR PLUS

laisser un message

laisser un message
Si vous êtes intéressé par nos produits et souhaitez en savoir plus, veuillez laisser un message ici, nous vous répondrons dès que possible.
soumettre

Maison

Des produits

WhatsApp

Contactez-nous