bannière
Maison

Chambre d'essai de choc thermique

Chambre d'essai de choc thermique

  • Three-Chamber Thermal Shock Chamber: A "Touchstone" for Reliability Under Extreme Conditions - In-depth Analysis of Its Working Principle
    Dec 18, 2025
        In fields such as electronics and automotive, a product's ability to withstand sudden temperature changes is crucial to its reliability. As a key device for simulating extreme temperature differences, this article will analyze the working principle of the three-chamber thermal shock chamber and reveal the core of its "freezing-heating alternation" technology. I. Core Definition: What is a Three-Chamber Thermal Shock Chamber? The three-chamber thermal shock chamber tests samples by rapidly switching between high and low temperature environments. With an additional independent test chamber, it achieves precise temperature control and fast switching among the three chambers, effectively evaluating the performance stability of products under sudden temperature changes. II. Structural Foundation: Synergy of Three Chambers and Core Systems The operation of the equipment relies on the precise cooperation of "three chambers + four systems". Clarifying the functions of each component is the key to understanding its working logic. 1. Three Chambers: The "Environment Switching Station" for Tests High-temperature Chamber: Provides a high temperature range from room temperature to over 150℃ through heating elements. Fans and air ducts ensure uniform heat distribution, guaranteeing test accuracy. Low-temperature Chamber: Achieves a deep low temperature range of -60℃ to -80℃ using cascade refrigeration technology. Air circulation devices maintain stable low-temperature distribution. Test Chamber: Serves as the core channel connecting the high and low temperature chambers. Its quick-opening/closing door (≤10 seconds) reduces temperature loss and ensures shock effect. 2. Four Systems: The "Power Core" of Equipment Operation Temperature Control System: High-precision sensors work in conjunction with PID controllers to achieve a temperature control accuracy of ±0.5℃. Refrigeration System: Cascade technology combined with refrigerants R404A and R23 rapidly achieves stable deep low temperatures. Mechanical Transmission System: A stepping motor drives the sample rack for fast and accurate transfer between the three chambers, ensuring automatic operation. Air Circulation System: Centrifugal fans and customized air ducts form convection, avoiding temperature deviation in local areas of the sample.   III. Working Process: A Complete Closed Loop from Heating to Shock Taking the "high-temperature → low-temperature" shock as an example, the equipment operates in an automatic closed loop, with the process as follows: Preparation and Preheating: Fix the sample and set parameters (e.g., 120℃/-40℃, 30 minutes of heat preservation, 10 cycles). After startup, the high and low temperature chambers simultaneously reach the target temperatures and maintain them. Rapid Shock: After the high-temperature preservation, the sample is transferred to the low-temperature chamber through the test chamber within ≤10 seconds, completing the first shock. Circulation and Completion: After low-temperature preservation, the sample is transferred back to complete the reverse shock. The circulation continues until the set number of cycles is reached, then the equipment shuts down. The sample is inspected and test data is recorded.   IV. Core Technology Highlights: The Key to Ensuring "Precise Shock" The core competitiveness of the equipment stems from two key technologies: Rapid Temperature Response Technology: The high-temperature chamber adopts efficient heating and flow disturbance design, while the low-temperature chamber uses cascade refrigeration and anti-frost technology, ensuring fast and stable temperature changes. Seamless Switching and Sealing Technology: The test chamber features double sealing and a pneumatic quick-opening door, isolating air flow while balancing efficiency and service life.   V. Application Scenarios: Where is Thermal Shock Testing Needed? Such tests are required for mobile phone chips, automotive sensors, etc. They can expose potential defects in advance, such as material cracking and solder joint detachment, providing data support for product improvement. In summary, the three-chamber thermal shock chamber, with its core of "temperature control of three chambers (high-temperature chamber, test chamber, low-temperature chamber) + synergy of four systems", is a key equipment for ensuring product quality in high-end manufacturing.
    EN SAVOIR PLUS
  • How Does a Three-Chamber Thermal Shock Chamber Safeguard Product Reliability in Extreme Environments?
    Dec 17, 2025
        In industrial manufacturing and R&D, "environmental adaptability" is a core product quality indicator. High-precision sectors like electronics, automotive, and aerospace demand exceptional product stability under severe temperature fluctuations. The three-chamber thermal shock chamber, a professional tool for simulating extreme temperature changes, has become essential for enterprises to ensure product reliability. This article analyzes this key testing equipment. I. What is a Three-Chamber Thermal Shock Chamber? A three-chamber thermal shock chamber conducts thermal shock tests by rapidly switching between high and low temperature environments. Its core is the independent "high-temperature + low-temperature + test chamber" structure, which enables faster temperature changes and precise control compared to two-chamber designs (shared high-low temperature chamber), avoiding transitional temperature interference and replicating real extreme conditions. Key parameters: temperature range (-40℃~150℃ for high-temp chamber, -60℃~ambient for low-temp), shock rate (>10℃/s max), test chamber volume, and temperature uniformity (≤±2℃). These are customizable per industry standards. II. Core Working Principle: Rapid Temperature "Energy Switching" Its operation relies on "independent temperature control + rapid switching", with four key steps: 1. Zoned Control: High-temp chamber uses electric heating/hot air; low-temp chamber uses liquid nitrogen/cascade refrigeration. Both employ independent closed-loop control for stability. 2. Sample Placement: Sample is placed on a movable rack in the ambient-temperature test chamber initially. 3. Shock Cycle: Rack moves sample between high/low-temp chambers per program, simulating "high-low-high" cycles. 4. Data Monitoring: Built-in sensors record real-time temperature and sample performance for analysis. Compared to two-chamber models, it eliminates temperature balance time (boosting efficiency by 30%+), avoids cross-contamination, and ensures more reliable results. III. Core Advantages: Precision, Efficiency, and Stability - Extreme Temp Range: -60℃~180℃, 15℃/s max rate, simulating plateaus/polar/aviation conditions. - Precise Control: No temperature gradient; uniform heating/cooling, repeatability error ≤±1℃. - High Efficiency: No chamber transition waits, ideal for batch sample screening. - Wide Applicability: Suitable for electronics, automotive parts, aerospace components. IV. Typical Application Scenarios: Full-Link Coverage from Laboratory to Production Line Its core role is early defect detection, covering R&D, sampling, and quality tracing. Key applications focus on high-reliability industries: 1. Electronics and Electrical Industry: "Extreme Test" for Components Electronic components (chips, capacitors, PCBs) face frequent temperature changes. This test reveals thermal expansion/contraction defects (solder cracks, package aging). For example, 5G base station chips undergo 1,000 cycles at -40℃~85℃ for climatic adaptability. 2. Automotive Industry: "Environmental Adaptability Verification" for Vehicles and Parts Automobiles endure -30℃~40℃ cross-regional temp swings, demanding durable components. The chamber tests headlights, battery packs, displays, and seals. New energy vehicle battery packs undergo -20℃~60℃ shocks to verify charging safety; seals are tested for deformation/leakage resistance. 3. Aerospace and Military Industry: "Reliability Guarantee" in Extreme Environments Aerospace equipment (-50℃~100℃ liftoff temp changes) requires rigorous testing. Satellite solar panels undergo 2,000 cycles at -60℃~150℃ for space stability; aircraft black boxes are tested to ensure crash data preservation. 4. New Materials and Packaging Industry: "Pre-Screening" for Performance and Safety New materials (aerospace titanium alloys) use the test to verify mechanical stability. Food/pharmaceutical packaging (aluminum foil, glass) is tested to prevent damage/leakage during refrigeration/transport. V. Conclusion: The "Invisible Guardian" of Reliability Testing      The chamber’s value lies in simulating extreme environments to pre-test products, reducing after-sales risks and boosting competitiveness. As manufacturing advances, it has evolved from a niche tool to a standard asset for R&D and quality control. For temperature reliability testing, select a chamber with parameters matching your products—pre-emptive defect detection is far more effective than post-failure fixes.
    EN SAVOIR PLUS
  • Differences Between High-Low Temperature Test Chamber and Thermal Shock Chamber
    Nov 26, 2025
    In industrial product reliability testing, high and low temperature test chambers and temperature shock test chambers are core environmental testing equipment, both simulating extreme temperatures to verify product durability. However, they differ fundamentally: the former focuses on gradual temperature-humidity cycles, while the latter on instantaneous thermal shock. Clarifying these differences is key to matching test needs and ensuring data validity. 1. Rate High-Low Temperature Test Chamber: Slow, with a regular rate of 0.7∼1 ℃/min, and rapid versions can reach 5∼15 ℃/min. Thermal Shock Chamber: Abrupt, with instant switching. 2. Structure High-Low Temperature Test Chamber: Single-chamber structure, integrating heating, refrigeration, and humidification functions. Thermal Shock Chamber: Multi-chamber structure, including high-temperature chamber, low-temperature chamber, and test chamber. 3. Temperature Continuity High-Low Temperature Test Chamber: The temperature changes smoothly without any "shock sensation". Thermal Shock Chamber: The temperature changes by leaps and bounds, with a common temperature range of −40∼150℃. 4. Application High-Low Temperature Test Chamber: Suitable for temperature endurance testing of general products such as electronic devices, household appliances, and building materials. Thermal Shock Chamber: Suitable for shock resistance testing of temperature-sensitive products such as automotive electronics, semiconductors, and aerospace components. 5. Core Position & Test Purpose High-Low Temperature Test Chamber: Simulates gradual temperature (and humidity) changes to test product stability under slow thermal variation (e.g., electronic devices’ performance after gradual cooling to -40℃ or heating to 85℃). Thermal Shock Chamber: Simulates abrupt temperature switching (≤30s transition) to test product resistance to extreme thermal shock (e.g., auto parts adapting to drastic day-night temperature changes, aerospace components’ tolerance to sudden high-low temperature shifts). Summary The high and low temperature test chamber is a "slow-paced endurance test", while the temperature shock chamber is a "fast-paced explosive power challenge". Just based on whether the product will encounter "sudden cold and heat" in the actual usage scenario, the precise selection can be made.
    EN SAVOIR PLUS
  • 3-Zone Thermal Shock Chamber: Introduction & Applications
    Nov 25, 2025
    The 3-zone thermal shock chamber is a test device for simulating extreme temperature shock environments, composed of a high-temperature chamber, a low-temperature chamber, and a test chamber. I.  Detailed Introduction 1.1 Working Principle The high-temperature chamber achieves precise temperature control via heaters and a PID logic circuit, while the low-temperature chamber maintains low temperatures through a refrigeration system. During testing, the sample stays stationary in the test chamber; the control system switches dampers to rapidly inject high/low-temperature air into the test chamber for thermal shock tests. 1.2 Structural Features Adopting an upper-middle-lower structure (upper: high-temperature; lower: low-temperature; middle: test chamber), its internal/external materials are mostly stainless steel. Insulation materials (superfine glass fiber, polyurethane foam) ensure excellent thermal insulation. A test hole on the left facilitates external power supply and load wiring for component testing. 1.3 Performance Parameters Programmable temperature shock range: typically -40℃ to +150℃; temperature control accuracy: ±0.2℃; chamber uniformity: ±2℃; maximum shock duration: 999h59min; adjustable cycles: 1-999 times. 1.4 Control & Operation Equipped with a large color LCD touch controller (Chinese/English interface), it supports independent setting of multiple test specifications, and features real-time status display and curve visualization. 1.5 Safety Protection Comprehensive protections include power overload, leakage, control circuit overload/short-circuit, compressor, grounding, and over-temperature protection, ensuring reliable long-term operation. II. Main Applications Electronics Industry: Tests performance/reliability of electronic components, PCBs, semiconductors under extreme temperatures to ensure stable operation and reduce after-sales failures. Automotive Industry: Evaluates temperature resistance of auto parts (engine, battery, electronic control system, interior materials) by simulating climatic temperature changes, guaranteeing vehicle performance and safety. Aerospace Field: Tests aerospace electronics, sensors, aero-engine blades, and materials under thermal shock to ensure flight safety. Materials Science: Assesses thermal expansion/contraction and weather resistance of materials, providing data for R&D and application of new materials.
    EN SAVOIR PLUS
  • What should we pay attention to when using a thermal shock test chamber (water-cooled)?
    Nov 22, 2025
    I. Before Operation Use deionized water or distilled water as cooling water (to prevent scale formation); control temperature at 15-30℃, pressure at 0.15-0.3MPa, flow rate ≥5L/min. Clean the Y-type filter element in advance to ensure unobstructed water flow. Inspect water supply/drainage pipelines for secure connections, no leakage or kinking; keep drainage ports unobstructed with a height difference ≥10cm. Ensure the environment is ventilated and dry, grounding resistance ≤4Ω, and power supply (AC380V±10%) stable. Keep the inner chamber and shelves clean. Sample volume ≤1/3 of effective capacity, with weight evenly distributed on shelves. Seal moisture-sensitive parts of non-hermetic samples to avoid condensation affecting test accuracy. II. During Operation Real-time monitor cooling water pressure, flow rate and temperature. Immediately shut down for troubleshooting (pipeline blockage, leakage or chiller failure) if pressure drops sharply, flow is insufficient or temperature exceeds 35℃. Set high/low temperature parameters per GB/T, IEC and other standards (not exceeding rated range); control heating/cooling rate ≤5℃/min. Prohibit instantaneous switching between extreme temperatures. Do not open the door arbitrarily during operation (to prevent scalding/frostbite from hot/cold air). Use protective gloves for emergency sample handling. Shut down immediately for maintenance upon alarm (overtemperature, water shortage, etc.); prohibit forced operation. III. After Test Turn off power and cooling water inlet/outlet valves; drain residual water in pipelines. Clean the water tank and replace water monthly; add special water stabilizer to extend pipeline service life. Wipe the inner chamber and shelves after temperature returns to room temperature. Clean the air filter (1-2 times monthly); inspect pipeline seals and replace aging/leaking ones promptly. For long-term non-use: Power on and run for 30 minutes monthly (including water cooling system circulation), inject anti-rust protection fluid into pipelines, and cover the equipment with a dust cover in a dry, ventilated place. IV. Prohibitions Prohibit using unqualified water (tap water, well water, etc.) or blocking filters/drainage ports (to avoid affecting heat dissipation). Prohibit overloading samples or unauthorized disassembly/modification of water cooling pipelines/core components. Repairs must be performed by professionals. Prohibit frequent start-stop (wait ≥5 minutes after shutdown before restarting). Prohibit placing flammable, explosive or corrosive substances.
    EN SAVOIR PLUS
  • Top Environmental Test Chamber Partner, Your Trusted Choice
    Nov 08, 2025
        Environmental test chambers simulate complex conditions such as high/low temperatures and humidity, widely serving industries including electronics, automotive, aerospace, materials, and medical devices. Their core function is to verify the tolerance of products and materials, enabling early defect detection, ensuring product reliability, facilitating industry compliance, and reducing after-sales costs. They are critical equipment for R&D and quality control.     Founded in 2005, Lab Companion specializes in the R&D and manufacturing of environmental simulation equipment. Since its establishment, the company has deeply cultivated core technologies and obtained multiple patent certifications, demonstrating strong technical capabilities in this field. Our cooperative clients cover numerous industries such as aviation, aerospace, ordnance, marine engineering, nuclear power, communications, automotive, rail transit, electronics, semiconductors, and new energy.         Lab Companion offers a comprehensive product portfolio, including high-low temperature alternating humidity test chambers, rapid temperature change test chambers, thermal shock test chambers, walk-in environmental test chambers, high-low temperature low-pressure test chambers, temperature-humidity-vibration combined test chambers, and customized non-standard environmental test equipment. Each product line provides multiple options for models, sizes, and temperature-humidity parameters to accurately meet diverse application needs.         In addition, we deliver premium pre-sales and after-sales services, offering full-cycle support from product selection to after-sales guarantee to ensure your peace of mind. Should you have any cooperation intentions or related inquiries, please feel free to contact us at any time!
    EN SAVOIR PLUS
  • Lab Two-Chamber Thermal Shock Chamber
    Nov 03, 2025
    The two-chamber thermal shock chamber is a highly reliable environmental testing device specifically designed for evaluating the ability of products to withstand extreme temperature changes. It simulates harsh temperature shock conditions to rapidly expose the possible failures of materials, electronic components, automotive parts and aerospace equipment during rapid thermal expansion and contraction, such as cracking, performance degradation and connection faults. It is a key tool for improving product quality and reliability. The core design concept of this device lies in efficiency and harshness. It has two independently controlled test chambers inside: a high-temperature chamber and a low-temperature chamber, which are respectively maintained at the set extreme temperatures continuously. The sample to be tested is placed in an automatic mechanical basket. During the test, the basket will be rapidly switched between the high-temperature zone and the low-temperature zone under the program control, instantly exposing the sample to a huge temperature difference environment, thus achieving the true "thermal shock" effect. Compared with another mainstream three-chamber (static) impact chamber, the significant advantage of the two-chamber type lies in its extremely fast temperature conversion speed and short temperature recovery time, ensuring the strictness and consistency of the test conditions. It is highly suitable for testing samples with sturdy structures that can withstand mechanical movement, and the testing efficiency is extremely high. Its working principle determines that during the testing process, the temperature fluctuation of the high and low temperature chamber is small, it can quickly return to the set point, and is not significantly affected by the sample load. This equipment is widely used in fields such as semiconductors, integrated circuits, national defense science and technology, automotive electronics, and new material research and development, for conducting reliability tests as required by various international standards. Its main technical parameters include a wide temperature range (high temperatures up to +150°C to +200°C, low temperatures down to -40°C to -65°C or even lower), precise temperature control accuracy, and customizable sample area sizes. The Lab two-chamber thermal shock chamber, with its irreplaceable rapid temperature change capability, has become the ultimate touchstone for testing the adaptability and durability of products in extreme temperature environments, providing a strong guarantee for the precision manufacturing and reliability verification of modern industry.
    EN SAVOIR PLUS
  • How is over-temperature protection carried out in a temperature test chamber?
    Oct 23, 2025
    The over-temperature protection of the temperature test chamber is a multi-level and multi-redundant safety system. Its core purpose is to prevent the temperature inside the chamber from rising out of control due to equipment failure, thereby protecting the safety of the test samples, the test chamber itself and the laboratory environment.   The protection system usually consists of the following key parts working together: 1. Sensor: The main sensor is used for the normal temperature control of the test chamber and provides feedback signals to the main controller. An independent over-temperature protection sensor is the key to a safety system. It is a temperature-sensing element independent of the main control temperature system (usually a platinum resistance or thermocouple), which is placed by strategically at the position within the box that best represents the risk of overheating (such as near the heater outlet or on the top of the working chamber). Its sole task is to monitor over-temperature. 2. Processing unit: The main controller receives signals from the main sensor and executes the set temperature program. The independent over-temperature protector, as an independent hardware device, is specifically designed to receive and process the signals from the over-temperature protection sensor. It does not rely on the main controller. Even if the main controller crashes or experiences a serious malfunction, it can still operate normally. 3. Actuator: The main controller controls the on and off of the heater and the cooler. The safety relay/solid-state relay receives the signal sent by the over-temperature protector and directly cuts off the power supply circuit of the heater. This is the final execution action.   The over-temperature protection of the temperature test chamber is a multi-level, hard-wire connected safety system designed based on the concepts of "redundancy" and "independence". It does not rely on the main control system. Through independent sensors and controllers, when a dangerous temperature is detected, it directly and forcibly cuts off the heating energy and notifies the user through sound and light alarms, thus forming a complete and reliable safety closed loop.
    EN SAVOIR PLUS
  • Lab Thermal Resistance Sensing Core Working Principle
    Oct 16, 2025
    The core of the thermal resistance induction in high and low temperature test chambers also utilizes the physical property that the resistance value of platinum metal changes with temperature. The core logic of the control system is a closed-loop feedback control: measurement → comparison → regulation → stability   Firstly, the thermal resistance sensor senses the current temperature inside the chamber and converts it into a resistance value. The measurement circuit then converts the resistance value into a temperature signal and transmits it to the controller of the test chamber. The controller compares this measured temperature with the target temperature set by the user and calculates the deviation value. Subsequently, the controller outputs instructions to the actuator (such as the heater, compressor, liquid nitrogen valve, etc.) based on the magnitude and direction of the deviation. If the measured temperature is lower than the target temperature, start the heater to heat up; otherwise, start the refrigeration system to cool down. Through such continuous measurement, comparison and adjustment, the temperature inside the box is eventually stabilized at the target temperature set by the user and the required accuracy is maintained.   Due to the fact that high and low temperature test chambers need to simulate extreme and rapidly changing temperature environments (such as cycles from -70°C to +150°C), the requirements for thermal resistance sensors are much higher than those for ordinary industrial temperature measurement.   Meanwhile, there is usually more than one sensor inside the high and low temperature test chamber. The main control sensor is usually installed in the working space of the test chamber, close to the air outlet or at a representative position. It is the core of temperature control. The controller decides on heating or cooling based on its readings to ensure that the temperature in the working area meets the requirements of the test program. The monitoring sensors may be installed at other positions inside the box to verify with the main control sensors, thereby enhancing the reliability of the system. Over-temperature protection is independent of the main control system. When the main control system fails and the temperature exceeds the safety upper limit (or lower limit), the monitoring sensor will trigger an independent over-temperature protection circuit, immediately cutting off the heating (or cooling) power supply to protect the test samples and equipment safety. This is a crucial safety function.   Lab thermal resistance sensor is a precision component that integrates high-precision measurement, robust packaging, and system safety monitoring. It serves as the foundation and "sensory organ" for the entire test chamber to achieve precise and reliable temperature field control.
    EN SAVOIR PLUS
  • Quelles sont les performances de la chambre d'essai de choc à haute et basse température ? Quelles sont les performances de la chambre d'essai de choc à haute et basse température ?
    Jun 14, 2025
    La chambre d'essai d'impact haute et basse température est conçue pour tester la fiabilité des produits industriels à haute et basse température. Elle est utilisée pour évaluer les performances des composants et des matériaux dans des secteurs tels que l'électronique, l'automobile, l'aérospatiale, la construction navale et l'armement, ainsi que dans l'enseignement supérieur et la recherche, sous des cycles alternés de hautes et basses températures. Ses principales caractéristiques sont les suivantes :Excellente conductivité : Fabriqué à partir de terres rares, de cuivre, de fer, de silicium et d'autres éléments provenant de Chine, le câble en alliage subit un traitement spécial pour atteindre une conductivité 62 % supérieure à celle du cuivre. Après ce traitement, la section du conducteur en alliage est multipliée par 1,28 à 1,5, ce qui rend la capacité de transport de courant et la chute de tension du câble comparables à celles des câbles en cuivre, remplaçant ainsi efficacement le cuivre par de nouveaux alliages.Propriétés mécaniques supérieures : Comparé aux câbles en cuivre, le rebond de la chambre d'essai d'impact à haute et basse température est inférieur de 40 % et sa flexibilité est supérieure de 25 %. Il présente également d'excellentes propriétés de courbure, permettant un rayon d'installation bien plus petit que celui des câbles en cuivre, ce qui facilite l'installation et le raccordement des bornes. La formulation spéciale et le traitement thermique réduisent considérablement le fluage du conducteur sous l'effet de la chaleur et de la pression, garantissant ainsi des connexions électriques aussi stables que celles des câbles en cuivre.Performances de sécurité fiables : La chambre d'essai d'impact à haute et basse température a été rigoureusement certifiée par UL aux États-Unis et est utilisée sans problème depuis 40 ans dans des pays comme les États-Unis, le Canada et le Mexique. Basée sur une technologie américaine de pointe, elle a été testée et inspectée par de nombreux organismes nationaux, garantissant ainsi sa sécurité.Économies de performance économique : À performances électriques égales, le coût d'acquisition direct des enceintes d'essai d'impact à haute et basse température est de 20 à 30 % inférieur à celui des câbles en cuivre. Étant donné que les câbles en alliage pèsent deux fois moins lourd que les câbles en cuivre et présentent d'excellentes propriétés mécaniques, leur utilisation permet de réduire les coûts de transport et d'installation de plus de 20 % dans les bâtiments classiques et de plus de 40 % dans les bâtiments de grande portée. L'utilisation d'enceintes d'essai d'impact à haute et basse température aura un impact considérable sur la construction d'une société économe en ressources.Excellentes performances anticorrosion : Exposés à l'air à haute température, les câbles en alliage forment immédiatement une couche d'oxyde dense hautement résistante à diverses formes de corrosion, ce qui les rend adaptés aux environnements difficiles. De plus, la structure interne optimisée du conducteur en alliage et l'utilisation d'un isolant en polyéthylène réticulé au silane prolongent la durée de vie des câbles en alliage de plus de 10 ans par rapport aux câbles en cuivre.
    EN SAVOIR PLUS
  • Chambre d'essai d'humidité à haute et basse température Application
    Jun 03, 2025
    Chambre d'essai d'humidité à haute et basse température Il joue un rôle important dans de nombreux secteurs grâce à ses puissantes capacités de simulation environnementale. Voici un aperçu de ses principaux secteurs d'application :❖ L’aérospatiale est utilisée pour tester les performances des avions, des satellites, des fusées et d’autres composants et matériaux aérospatiaux dans des conditions de température et d’humidité extrêmes.❖ Tester la stabilité et la fiabilité des composants électroniques, des circuits imprimés, des écrans, des batteries et d'autres produits électroniques dans un environnement à haute température, basse température et humidité.❖ Évaluer la durabilité des composants automobiles tels que les pièces de moteur, les systèmes de contrôle électronique, les pneus et les revêtements dans des environnements difficiles.❖ Tests d'adaptabilité environnementale des équipements et systèmes d'armes militaires à des fins de défense et d'utilisation militaire afin de garantir leur fonctionnement normal dans diverses conditions climatiques.❖ Recherche en science des matériaux sur la résistance à la chaleur, au froid et à l'humidité des nouveaux matériaux, ainsi que sur leurs propriétés physiques et chimiques dans différentes conditions environnementales.❖ Évaluation énergétique et environnementale de l’adaptabilité environnementale et de la résistance aux intempéries des nouveaux produits énergétiques tels que les panneaux solaires et les équipements de stockage d’énergie.❖ Essai de transport des performances des composants de véhicules, navires, avions et autres véhicules de transport dans des environnements extrêmes.❖ Tests biomédicaux de la stabilité et de l'efficacité des dispositifs médicaux et des médicaments sous variations de température et d'humidité.❖ L'inspection qualité est utilisée pour les tests environnementaux et la certification des produits dans le centre de contrôle qualité des produits. La chambre d'essai d'humidité à haute et basse température aide les entreprises et les institutions des industries ci-dessus à garantir que leurs produits peuvent fonctionner normalement dans l'environnement d'utilisation prévu en simulant diverses conditions extrêmes qui peuvent être rencontrées dans l'environnement naturel, afin d'améliorer la compétitivité du marché des produits.
    EN SAVOIR PLUS
  • Qu'est-ce que la chambre d'essai de choc thermique Qu'est-ce que la chambre d'essai de choc thermique
    Feb 22, 2025
    Le Choc thermique THNE Chamber est un équipement expérimental spécialisé utilisé pour tester les performances des matériaux, des composants électroniques, des appareils et d'autres produits in conditions de température extrêmes. Il peut simuler les changements environnementaux du froid extrême à la chaleur extrême, Grâce à des transitions de température rapides, observer et évaluer la stabilité et la fiabilité des échantillons dans des conditions aussi difficiles. Ce type d'expérience est particulièrement dans la fabrication Dispositifs industriels, électroniques et domaines de recherche scientifique, autant de produits volonté facteurinsigne Changements de température drastiques dans l'utilisation quotidienne. Il est extrêmement important d'assurer le fonctionnement normal des produits électroniques dans différents environnements pendant le conceptioninsigne et la fabrication, en particulier dans les domaines de l'aérospatiale, de l'électronique automobile, de l'équipement de communication, etc. Les produits doivent être capables de résister à divers changements météorologiques et de température difficiles. Grâce à des tests cycliques à haute et basse température, les ingénieurs peuvent révéler des défauts potentiels quand nousinsigne, aussi Fournir des références importantes pour l'amélioration et l'innovation des produits ultérieures. Le Chambre d'essai de choc thermique se compose de deux parties principales: le système de contrôle environnemental de températures élevées et basses. La variation de la température peut généralement être comprise entre -70 ℃ et 150 ℃ Dans la chambre, et la plage de température spécifique peut être ajustée en fonction de différents besoins. Le processus expérimental volonté avec plusieurs cycles, et chaque cycles contiennent des changements de température rapides qui L'échantillon à des impacts intenses entre les températures élevées et basses. Ce type de test peut détecter les propriétés physiques de échantillons, y compris leur force de traction, leur élasticité, leur dureté et même détecter les problèmes potentiels in Fatigue thermique et vieillissement du matériau.De plus, la conception de cet équipement de test est également très sophistiquée, souvent équipée de systèmes de surveillance avancés qui peuvent enregistrer des changements de température et des réactions d'échantillonnage dans  Le processus de test, ce qui rend l'évaluation fonctionne plus précise et plus efficace. Avec le développement de la technologie, la technologie de Choc thermique THNE Chamber est également constamment mis à jour, ce qui améliore non seulement la précision et la vitesse des tests, mais améliore également la sécurité et la fiabilité de l'utilisation.En résumé, Choc thermique THNE Chamber est un outil indispensable dans la recherche moderne des matériaux et des produits. Il nous fournit un moyen efficace de garantir que les produits peuvent toujours maintenir des performances supérieures et une qualité stable dans des environnements changeants. Il s'agit d'un lien important dans la promotion des progrès technologiques et du développement industriel. À travers de telles expériences processus, nous pouvons mieux comprendre les caractéristiques et le comportement des matériaux, favorisant ainsi la naissance de produits plus sûrs et plus fiables. 
    EN SAVOIR PLUS
1 2 3
Un total de 3pages

laisser un message

laisser un message
Si vous êtes intéressé par nos produits et souhaitez en savoir plus, veuillez laisser un message ici, nous vous répondrons dès que possible.
soumettre

Maison

Des produits

WhatsApp

Contactez-nous