Thermal Cycling Test(TC) & Thermal Shock Test(TS)
Thermal Cycling Test(TC):
In the life cycle of the product, it may face various environmental conditions, which makes the product appear in the vulnerable part, resulting in product damage or failure, and then affect the reliability of the product.
A series of high and low temperature cycling tests are done on the temperature change at the temperature variation rate of 5~15 degrees per minute, which is not a real simulation of the actual situation. Its purpose is to apply stress to the test piece, accelerate the aging factor of the test piece, so that the test piece may cause damage to the system equipment and components under environmental factors, in order to determine whether the test piece is correctly designed or manufactured.
Common ones are:
Electrical function of the product
The lubricant deteriorates and loses lubrication
Loss of mechanical strength, resulting in cracks and cracks
The deterioration of the material causes chemical action
Scope of application:
Module/system product environment simulation test
Module/System Product Strife test
PCB/PCBA/ Solder Joint Accelerated Stress Test (ALT/AST)...
Thermal Shock Test(TS):
In the life cycle of the product, it may face various environmental conditions, which makes the product appear in the vulnerable part, resulting in product damage or failure, and then affect the reliability of the product.
High and low temperature shock tests under extremely harsh conditions on rapid temperature changes at a temperature variability of 40 degrees per minute are not truly simulated. Its purpose is to apply severe stress to the test piece to accelerate the aging factor of the test piece, so that the test piece may cause potential damage to the system equipment and components under environmental factors, in order to determine whether the test piece is correctly designed or manufactured.
Common ones are:
Electrical function of the product
The product structure is damaged or the strength is reduced
Tin cracking of components
The deterioration of the material causes chemical action
Seal damage
Machine specifications:
Temperature range: -60 ° C to +150 ° C
Recovery time: < 5 minutes
Inside dimension: 370*350*330mm (D×W×H)
Scope of application:
PCB reliability acceleration test
Accelerated life test of vehicle electric module
LED parts accelerated test...
Effects of temperature changes on products:
The coating layer of components falls off, the potting materials and sealing compounds crack, even the sealing shell cracks, and the filling materials leak, which causes the electrical performance of components to decline.
Products composed of different materials, when the temperature changes, the product is not evenly heated, resulting in product deformation, sealing products cracking, glass or glassware and optics broken;
The large temperature difference makes the surface of the product condense or frost at low temperature, evaporates or melts at high temperature, and the result of such repeated action leads to and accelerates the corrosion of the product.
Environmental effects of temperature change:
Broken glass and optical equipment.
The movable part is stuck or loose.
Structure creates separation.
Electrical changes.
Electrical or mechanical failure due to rapid condensation or freezing.
Fracture in a granular or striated manner.
Different shrinkage or expansion characteristics of different materials.
The component is deformed or broken.
Cracks in surface coatings.
Air leak in the containment compartment.
Chambre d'essai de cyclage rapide de la température Lab CompanionPrésentation de Lab CompanionAvec plus de 20 ans d'expérience, Compagnon de laboratoire est un fabricant de classe mondiale d'enceintes environnementales et un fournisseur accompli de systèmes et d'équipements de test clé en main. Toutes nos chambres s'appuient sur la réputation de Lab Companion en matière de longue durée de vie et de fiabilité exceptionnelle. Avec une portée de conception, de fabrication et de service, Lab Companion a établi un système de gestion de la qualité conforme à la norme internationale du système de qualité ISO 9001:2008. Le programme d'étalonnage des équipements de Lab Companion est accrédité selon la norme internationale ISO 17025 et la norme nationale américaine ANSI/NCSL-Z-540-1 par A2LA. A2LA est membre à part entière et signataire de la Coopération internationale pour l'accréditation des laboratoires (ILAC), de l'Asia Pacific Laboratory Accreditation (APLAC) et de la Coopération européenne pour l'accréditation (EA). Les chambres d'essais environnementaux de la série SE de Lab Companion offrent un système de circulation d'air considérablement amélioré, qui offre de meilleurs gradients et des taux de changement de température des produits améliorés. Ces chambres utilisent le programmeur/contrôleur phare 8800 de Thermotron, doté d'un écran plat haute résolution de 12,1 pouces avec interface utilisateur à écran tactile, de capacités étendues de création de graphiques, d'enregistrement de données, de modification, d'accès à l'aide à l'écran et de stockage de données sur disque dur à long terme.Non seulement nous proposons des produits de la plus haute qualité, mais nous fournissons également une assistance continue conçue pour vous permettre de rester opérationnel longtemps après la vente initiale. Nous fournissons un service local direct en usine avec un vaste inventaire des pièces dont vous pourriez avoir besoin. PerformancePlage de température : -70°C à +180°CPerformance : Avec une charge d'aluminium de 23 kg (IEC60068-3-5), le taux de montée de +85°C à -40°C est de 15℃/min ; la vitesse de refroidissement de -40°C à +85°C est également de 15℃/min.Contrôle de la température : ± 1°C Températures sèches à partir du point de contrôle après stabilisation au niveau du capteur de contrôleLes performances sont basées sur des conditions ambiantes de 75 °F (23,9 °C) et 50 % d'humidité relative.Performances de refroidissement/chauffage basées sur la mesure au niveau du capteur de contrôle dans le flux d'air souffléConstruireIntérieurAcier inoxydable non magnétique série 300 à haute teneur en nickelCoutures internes soudées à l'héliarc pour une fermeture hermétique du linerCoins et coutures conçus pour permettre l'expansion et la contraction sous les températures extrêmes rencontréesÉvacuation des condensats située dans le plancher liner et sous le plénum de climatisationLa base de la chambre est entièrement soudéeIsolant en fibre de verre « Ultra-Lite » non décantantUne tablette intérieure réglable en acier inoxydable est standardExtérieurTôle d'acier traitée matricéeCouvercles d'accès en métal fournis pour une ouverture facile des portes vers les composants électriquesVernis de finition à base d'eau, séché à l'air, pulvérisé sur une surface nettoyée et apprêtée.Portes d'accès à charnières faciles à soulever pour l'entretien du système de réfrigérationUn port d'accès de 12,5 cm de diamètre avec soudure intérieure et bouchon isolant amovible monté dans la paroi latérale droite, accessoires sur porte battante pour un accès facileCaractéristiquesLe fonctionnement de la chambre affiche clairement des informations utiles sur le temps d'exécutionL'écran graphique offre des capacités étendues, une programmation et des rapports améliorésL'état du système affiche les paramètres cruciaux du système de réfrigérationProgram Entry facilite le chargement, l'affichage et la modification des profilsLes assistants de configuration rapides facilitent la saisie du profilTableaux de réfrigération contextuels pour référence pratiqueTherm-Alarm® offre une protection par alarme de surchauffe et de sous-températureL'écran du journal d'activité fournit un historique complet de l'équipementLe serveur Web permet l'accès Internet aux équipements via EthernetLe clavier contextuel convivial rend la saisie des données rapide et facileComprend :- Quatre ports USB : deux externes et deux internes-Ethernet-RS-232Spécifications techniques1 à 4 canaux programmables indépendammentPrécision de mesure : 0,25 % de l'étendue typiqueÉchelle de température sélectionnable en °C ou °FÉcran tactile plat couleur de 12,1 pouces (30 cm)Résolution : 0,1°C, 0,1%RH, 0,01 pour d'autres applications linéairesHorloge en temps réel incluseTaux d'échantillonnage : variable de processus échantillonnée toutes les 0,1 secondeBande proportionnelle : programmable de 1,0 ° à 300 °Méthode de contrôle : numériqueIntervalles : illimitésRésolution d'intervalle : 1 seconde à 99 heures, 59 minutes avec une résolution de 1 seconde-RS-232- 10+ ans de stockage de données- Contrôle de la température du produit- Tableau de relais d'événementsModes de fonctionnement : automatique ou manuelStockage du programme : illimitéBoucles de programme :- Jusqu'à 64 boucles par programmeLes boucles peuvent être répétées jusqu'à 9 999 fois par programme- Jusqu'à 64 boucles imbriquées sont autorisées par
Test de stabilité du médicament
L'efficacité et la sécurité des médicaments ont attiré beaucoup d'attention, et il s'agit également d'une question de moyens de subsistance à laquelle le pays et le gouvernement attachent une grande importance. La stabilité des médicaments affectera leur efficacité et leur sécurité. Afin de garantir la qualité des médicaments et des conteneurs de stockage, des tests de stabilité doivent être effectués pour déterminer leur durée d'efficacité et leur état de stockage. Le test de stabilité étudie principalement si la qualité des médicaments est affectée par des facteurs environnementaux tels que la température, l'humidité et la lumière, et si elle change avec le temps et la corrélation entre eux, et étudie la courbe de dégradation des médicaments, selon laquelle la période d'efficacité est présumée pour garantir l’efficacité et la sécurité des médicaments lorsqu’ils sont utilisés. Cet article rassemble les informations standard et les méthodes de test requises pour divers tests de stabilité pour référence des clients.
Premièrement, les critères des tests de stabilité des médicaments
Conditions de conservation des médicaments :
Conditions de stockage (Remarque 2)
Expérience à long terme
25℃±2℃ / 60 %±5 % HR ou
30 ℃ ± 2 ℃ /65 % ± 5 % d'humidité relative
Test accéléré
40 ℃ ± 2 ℃ / 75 % ± 5 % HR
Test intermédiaire (Remarque 1)
30 ℃ ± 2 ℃ / 65 % ± 5 % HR
Remarque 1 : Si la condition de test à long terme a été réglée à 30 ℃ ± 2 ℃/65 % ± 5 % HR, il n'y a pas de test intermédiaire ; si les conditions de stockage à long terme sont de 25 ℃ ± 2 ℃/60 % ± 5 % HR et qu'il y a un changement significatif dans le test accéléré, alors un test intermédiaire doit être ajouté. Et devrait être évalué selon le critère de « changement significatif ».
Remarque 2 : Les récipients imperméables scellés tels que les ampoules en verre peuvent être exemptés des conditions d'humidité. Sauf indication contraire, tous les tests doivent être effectués conformément au plan de test de stabilité lors de l'essai intermédiaire.
Les données des tests accélérés devraient être disponibles pendant six mois. La durée minimale du test de stabilité est de 12 mois pour le test moyen et le test longue durée.
Conserver au réfrigérateur :
Conditions de stockage
Expérience à long terme
5 ℃ ± 3 ℃
Test accéléré
25 ℃ ± 2 ℃ / 60 % ± 5 % HR
Conservé au congélateur :
Conditions de stockage
Expérience à long terme
-20 ℃ ± 5 ℃
Test accéléré
5 ℃ ± 3 ℃
Si le produit contenant de l'eau ou des solvants susceptibles de perdre du solvant est conditionné dans un récipient semi-perméable, l'évaluation de la stabilité doit être effectuée sous une faible humidité relative pendant une longue période, ou un test intermédiaire de 12 mois, et un test accéléré de 6 mois, afin de prouver que le médicament placé dans le récipient semi-perméable peut résister à un environnement à faible humidité relative.
Contenant de l'eau ou des solvants
Conditions de stockage
Expérience à long terme
25 ℃ ± 2 ℃ / 40 % ± 5 % RH ou 30 ℃ ± 2 ℃ /35 % ± 5 % d'humidité relative
Test accéléré
40 ℃ ± 2 ℃ ; ≤ 25 % HR
Test intermédiaire (Remarque 1)
30 ℃ ± 2 ℃ / 35 % HR ± 5 % HR
Remarque 1 : Si la condition de test à long terme est de 30 ℃ ± 2 ℃ / 35 % ± 5 % HR, il n'y a pas de test intermédiaire.
Le calcul du taux de perte relative d’eau à une température constante de 40℃ est le suivant :
Humidité relative substituée (A)
Contrôler l'humidité relative (R)
Rapport du taux de perte d'eau ([1-R]/[1-A])
60% HR
25% HR
1.9
60% HR
40% HR
1,5
65% HR
35% HR
1.9
75% HR
25% HR
3.0
Illustration : Pour les médicaments aqueux placés dans des récipients semi-perméables, le taux de perte d'eau à 25%HR est trois fois supérieur à 75%HR.
Deuxièmement, les solutions de stabilité des médicaments
Critères courants des tests de stabilité des médicaments
(Source : Food and Drug Administration, ministère de la Santé et du Bien-être social)
Article
Conditions de stockage
Expérience à long terme
25°C /60% HR
Test accéléré
40°C /75%HR
Test intermédiaire
30°C/65%HR
(1) Test sur une large plage de température
Article
Conditions de stockage
Expérience à long terme
Conditions de température basse ou inférieure à zéro
Test accéléré
Température et humidité ambiantes ou conditions de basse température
(2) Équipement d'essai
1. Chambre d'essai à température et humidité constantes
2. Chambre de test de stabilité des médicaments
Test de fiabilité des caloducsLa technologie des caloducs est un élément de transfert de chaleur appelé « caloduc » inventé par G.M. rover du Laboratoire national de Los Alamos en 1963, qui utilise pleinement le principe de conduction thermique et les propriétés de transfert de chaleur rapide du milieu de réfrigération, et transfère rapidement la chaleur de l'objet chauffant à la source de chaleur via le caloduc. Sa conductivité thermique dépasse celle de n'importe quel métal connu. La technologie des caloducs a été largement utilisée dans les industries aérospatiale, militaire et autres, depuis qu'elle a été introduite dans l'industrie de fabrication de radiateurs, ce qui a amené les gens à modifier l'idée de conception du radiateur traditionnel et à se débarrasser du mode de dissipation thermique unique qui repose simplement sur moteur à volume d'air élevé pour obtenir un meilleur effet de dissipation thermique. L'utilisation de la technologie des caloducs permet au radiateur, même si l'utilisation d'un moteur à faible vitesse et à faible volume d'air, d'obtenir des résultats satisfaisants, de sorte que le problème de bruit causé par la chaleur de refroidissement de l'air ait été bien résolu, ouvrant ainsi un nouveau monde dans le industrie de dissipation thermique.Conditions de test de fiabilité des caloducs :Test de dépistage du stress à haute température : 150 ℃/24 heuresTest de cyclage de température :120℃(10min)←→-30℃(10min), rampe : 0,5℃, 10 cycles 125℃(60min)←→-40℃(60min), rampe : 2,75℃, 10 cyclesTest de choc thermique :120℃(2min)←→-30℃(2min), 250 cycles125℃(5min)←→-40℃(5min), 250 cycles100℃(5min)←→-50℃(5min), 2000 cycles (vérifier une fois après 200 cycles)Test à haute température et humidité élevée :85 ℃/85 % HR/1000 heuresTest de vieillissement accéléré :110 ℃/85 % HR/264 h.Autres éléments de test de caloduc :Test au brouillard salin, test de résistance (sablage), test de taux de fuite, test de vibration, test de vibration aléatoire, test de choc mécanique, test de combustion d'hélium, test de performance, test en soufflerie
Test de convection naturelle (pas de test de température de circulation du vent) et spécificationsLes équipements audiovisuels de divertissement à domicile et l'électronique automobile sont l'un des produits clés de nombreux fabricants, et le produit en cours de développement doit simuler l'adaptabilité du produit à la température et aux caractéristiques électroniques à différentes températures. Cependant, lorsque le four général ou la chambre d'essai à température et humidité constantes sont utilisés pour simuler l'environnement de température, le four et la chambre d'essai à température et humidité constantes ont une zone d'essai équipée d'un ventilateur de circulation, il y aura donc des problèmes de vitesse du vent dans le zone d'essai. Pendant le test, l'uniformité de la température est équilibrée en faisant tourner le ventilateur de circulation. Bien que l'uniformité de la température de la zone de test puisse être obtenue grâce à la circulation du vent, la chaleur du produit à tester sera également évacuée par l'air en circulation, ce qui sera très incompatible avec le produit réel dans un environnement d'utilisation sans vent. (comme le salon, à l'intérieur). En raison de la relation entre la circulation du vent, la différence de température du produit à tester sera de près de 10 ° C, afin de simuler l'utilisation réelle des conditions environnementales, beaucoup de gens comprendront à tort que seule la machine de test peut produire de la température (comme : four, chambre d'essai à température et humidité constantes) peut effectuer un test de convection naturelle, en fait, ce n'est pas le cas. Dans la spécification, il existe des exigences particulières concernant la vitesse du vent et un environnement de test sans vitesse du vent est requis. Grâce à l'équipement de test de convection naturelle (pas de test de circulation de vent forcé), l'environnement de température sans ventilateur est généré (test de convection naturelle), puis le test d'intégration du test est effectué pour détecter la température du produit testé. Cette solution peut être appliquée au test de température ambiante réelle de produits électroniques domestiques ou d'espaces confinés (tels que : grand téléviseur LCD, cockpit de voiture, électronique automobile, ordinateur portable, ordinateur de bureau, console de jeu, chaîne stéréo... Etc.).La différence de l'environnement de test avec ou sans circulation du vent pour le test du produit à tester :Si le produit à tester n'est pas sous tension, le produit à tester ne se chauffera pas, sa source de chaleur n'absorbe que la chaleur de l'air dans le four d'essai, et si le produit à tester est sous tension et chauffé, la circulation du vent dans le Le four d'essai enlèvera la chaleur du produit à tester. Chaque mètre d’augmentation de la vitesse du vent réduira sa chaleur d’environ 10 %. Supposons que l'on simule les caractéristiques de température des produits électroniques dans un environnement intérieur sans climatisation, si un four ou une chambre d'essai à température et humidité constantes est utilisé pour simuler 35 °C, bien que l'environnement dans la zone de test puisse être contrôlé à moins de 35 °C. grâce au chauffage et à la congélation électriques, la circulation du vent du four et la chambre d'essai à température et humidité constantes enlèveront la chaleur du produit à tester, rendant la température réelle du produit à tester inférieure à la température à l'état réel sans vent. Par conséquent, il est nécessaire d'utiliser une machine d'essai à convection naturelle sans vitesse du vent pour simuler efficacement l'environnement réel sans vent (tel que : cockpit de voiture intérieur sans démarrage, châssis d'instruments, boîtier étanche extérieur... Un tel environnement).Environnement intérieur sans circulation de vent ni rayonnement solaire :Grâce au testeur de convection naturelle, simulez l'utilisation réelle par le client de l'environnement de convection réel de la climatisation, l'analyse des points chauds et les caractéristiques de dissipation thermique de l'évaluation du produit, comme le téléviseur LCD sur la photo, non seulement pour prendre en compte sa propre dissipation thermique, mais aussi pour évaluer l'impact du rayonnement thermique à l'extérieur de la fenêtre, le rayonnement thermique du produit peut produire une chaleur rayonnante supplémentaire au-dessus de 35°C.Tableau comparatif de la vitesse du vent et du produit IC à tester :Lorsque la vitesse du vent ambiant est plus rapide, la température de la surface du CI enlèvera également la chaleur de la surface du CI en raison du cycle du vent, ce qui entraînera une vitesse du vent plus rapide et une température plus basse. Lorsque la vitesse du vent est de 0, la température est de 100 ℃, mais lorsque la vitesse du vent atteint 5 m/s, la température de surface IC est inférieure à 80 ℃.Test de circulation d'air non forcé :Conformément aux exigences de spécification de la norme IEC60068-2-2, dans le processus de test à haute température, il est nécessaire d'effectuer les conditions de test sans circulation d'air forcée, le processus de test doit être maintenu sous le composant de circulation sans vent et le un test à haute température est effectué dans le four d'essai, de sorte que le test ne peut pas être effectué à travers la chambre ou le four d'essai à température et humidité constantes, et l'appareil de contrôle à convection naturelle peut être utilisé pour simuler les conditions d'air libre.Description des conditions d'essai :Spécification d'essai pour la circulation d'air non forcée : CEI-68-2-2, GB2423.2, GB2423.2-89 3.3.1Test de circulation d'air non forcé : La condition de test de circulation d'air non forcée peut bien simuler la condition d'air libreGB2423.2-89 3.1.1 :Lors de la mesure dans des conditions d'air libre, lorsque la température de l'échantillon de test est stable, la température du point le plus chaud de la surface est supérieure de plus de 5 ℃ à la température du grand appareil environnant, il s'agit d'un échantillon de test de dissipation thermique, sinon, il s'agit d'un échantillon de test sans dissipation thermique.GB2423.2-8 10 (Test de gradient de température de l'échantillon de test de dissipation thermique) :Une procédure de test standard est fournie pour déterminer l'adaptabilité des produits électroniques thermiques (y compris les composants et autres produits au niveau de l'équipement) à utiliser à des températures élevées.Exigences des tests :un. Machine d'essai sans circulation d'air forcée (équipée d'un ventilateur ou d'une soufflante)b. Échantillon de test uniquec. Le taux de chauffage n'est pas supérieur à 1 ℃/mind. Une fois que la température de l'échantillon de test atteint la stabilité, l'échantillon de test est mis sous tension ou la charge électrique domestique est effectuée pour détecter les performances électriques.Caractéristiques de la chambre d'essai à convection naturelle :1. Peut évaluer la puissance calorifique du produit à tester après mise sous tension, pour fournir la meilleure uniformité de distribution ;2. Combiné avec un collecteur de données numériques, mesurez efficacement les informations de température pertinentes du produit à tester pour une analyse multipiste synchrone ;3. Enregistrez les informations de plus de 20 rails (enregistrement synchrone de la répartition de la température à l'intérieur du four d'essai, température multipiste du produit à tester, température moyenne... Etc.).4. Le contrôleur peut afficher directement la valeur d'enregistrement de température multipiste et la courbe d'enregistrement ; Les courbes de test multipistes peuvent être stockées sur une clé USB via le contrôleur ;5. Le logiciel d'analyse de courbe peut afficher intuitivement la courbe de température multipiste et produire des rapports EXCEL, et le contrôleur dispose de trois types d'affichage [anglais complexe] ;6. Sélection de capteur de température à thermocouple multi-type (B, E, J, K, N, R, S, T);7. Évolutif pour augmenter le taux de chauffage et contrôler la planification de la stabilité.
Fiabilité du substrat céramiqueLe PCB en céramique (substrat en céramique) fait référence à une plaque de traitement spéciale dans laquelle une feuille de cuivre est directement liée à la surface (simple ou double) d'un substrat en céramique d'alumine (Al2O3) ou de nitrure d'aluminium (AlN) à haute température. Le substrat composite ultra-mince présente d'excellentes performances d'isolation électrique, une conductivité thermique élevée, une excellente soudure et une force d'adhérence élevée, et peut être gravé dans une variété de graphiques tels que des cartes PCB, avec une grande capacité de transport de courant. Par conséquent, le substrat céramique est devenu le matériau de base de la technologie de structure de circuit électronique de haute puissance et de la technologie d'interconnexion, qui convient aux produits à haute valeur calorique (LED haute luminosité, énergie solaire), et son excellente résistance aux intempéries peut être appliquée à environnements extérieurs difficiles.Principaux produits d'application : Carte porteuse LED haute puissance, lumières LED, lampadaires LED, onduleur solaireCaractéristiques du substrat céramique :Structure : Excellente résistance mécanique, faible déformation, coefficient de dilatation thermique proche de celui de la plaquette de silicium (nitrure d'aluminium), dureté élevée, bonne aptitude au traitement, haute précision dimensionnelleClimat : convient aux environnements à haute température et humidité, conductivité thermique élevée, bonne résistance à la chaleur, résistance à la corrosion et à l'usure, résistance aux UV et au jaunissementChimie : Sans plomb, non toxique, bonne stabilité chimiqueÉlectrique : haute résistance d’isolation, métallisation facile, graphisme des circuits et forte adhérenceMarché : Matériaux abondants (argile, aluminium), faciles à fabriquer, prix basComparaison des caractéristiques thermiques des matériaux PCB (conductivité) :Panneau en fibre de verre (PCB traditionnel) : 0,5 W/mK, substrat en aluminium : 1~2,2W/mK, substrat en céramique : 24[alumine]~170[nitrure d'aluminium]W/mKCoefficient de transfert thermique du matériau (unité W/mK) :Résine : 0,5, alumine : 20-40, carbure de silicium : 160, aluminium : 170, nitrure d'aluminium : 220, cuivre : 380, diamant : 600Classification du processus de substrat céramique :Selon la ligne, le processus de substrat en céramique est divisé en : film mince, film épais, céramique multicouche cocuite à basse température (LTCC)Thin Film Process (DPC) : Contrôle précis de la conception des circuits des composants (largeur de ligne et épaisseur de film)Processus de couche épaisse (Thick film) : pour assurer la dissipation de la chaleur et les conditions météorologiquesCéramique multicouche cocuite à basse température (HTCC) : Utilisation de vitrocéramiques à basse température de frittage, faible point de fusion, conductivité élevée des caractéristiques de co-cuisson des métaux précieux, substrat céramique multicouche) et assemblage.Céramiques multicouches cocuites à basse température (LTCC) : empilez plusieurs substrats céramiques et intégrez des composants passifs et d'autres circuits intégrés.Processus de substrat céramique à couche mince :· Prétraitement → pulvérisation → revêtement photorésistant → développement de l'exposition → placage en ligne → retrait du film· Stratification → pressage à chaud → dégraissage → cuisson du substrat → formation du motif de circuit → cuisson du circuit· Stratification → motif de circuit imprimé de surface → pressage à chaud → dégraissage → co-cuisson· Graphiques de circuits imprimés → stratification → pressage à chaud → dégraissage → co-cuissonConditions de test de fiabilité du substrat céramique :Fonctionnement à haute température du substrat en céramique : 85 ℃Fonctionnement à basse température du substrat céramique : -40 ℃Substrat céramique froid et choc thermique :1. 155℃(15min)←→-55℃(15min)/300cycles2. 85 ℃ (30 min) s'il vous plaît - - 40 ℃ (30 min)/RAMPE : 10 min (12,5 ℃ / min) / 5 cyclesAdhésion du substrat céramique : coller à la surface du panneau avec du ruban adhésif 3M#600. Après 30 secondes, déchirez rapidement dans une direction de 90° avec la surface de la planche.Expérience d'encre rouge sur substrat céramique : faire bouillir pendant une heure, imperméableÉquipement d'essai :1. Chambre d'essai de chaleur humide à haute et basse température2. Chambre d'essai de choc froid et thermique à gaz à trois boîtes
Test de fiabilité des tablettesUn ordinateur tablette, également connu sous le nom d'ordinateur personnel tablette (tablette PC), est un petit ordinateur personnel portable qui utilise un écran tactile comme périphérique d'entrée de base. C'est un produit électronique à forte mobilité, et on le voit partout dans la vie (comme les gares d'attente, les trains, les trains à grande vitesse, les cafés, les restaurants, les salles de réunion, les banlieues, etc.). Les gens ne portent qu'une simple protection de manteau ou même pas, afin de faciliter l'utilisation, la conception réduit la taille, de sorte qu'elle puisse être directement placée dans la poche ou le sac à main, le sac à dos, mais la tablette en train de se déplacer connaîtra également de nombreuses changements physiques environnementaux (tels que température, humidité, vibration, impact, extrusion, etc.). Etc.) et les dommages naturels (tels que la lumière ultraviolette, la lumière du soleil, la poussière, le brouillard salin, les gouttelettes d'eau... Cela provoquera également des blessures artificielles involontaires ou un fonctionnement anormal et un mauvais fonctionnement, et même provoquera des pannes et des dommages (tels que : produits chimiques ménagers, transpiration des mains, chute, insertion et retrait excessifs des terminaux, frottement des poches, clous en cristal... Ceux-ci réduiront la durée de vie de la tablette, afin d'assurer la fiabilité du produit et de prolonger la durée de vie pour l'améliorer, nous devons porter sur un certain nombre de projets de tests de fiabilité environnementale sur la tablette, les tests pertinents suivants pour votre référence.Description du projet d'essais environnementaux :Simuler divers environnements difficiles et évaluations de fiabilité utilisées par les tablettes électroniques pour tester si leurs performances répondent aux exigences ; Il comprend principalement le fonctionnement à haute et basse température et le stockage à haute et basse température, la température et la condensation, le cycle de température et les chocs, les tests de combinaison humide et thermique, les ultraviolets, la lumière du soleil, l'égouttement, la poussière, le brouillard salin et d'autres tests.Plage de température de fonctionnement : 0 ℃ ~ 35 ℃/5 % ~ 95 % RHPlage de température de stockage : -10 ℃ ~ 50 ℃/10 % ~ 90 % RH.Test de fonctionnement à basse température : -10 ℃/2h/fonctionnement électriqueTest de fonctionnement à haute température : 40℃/8h/tout en fonctionnementTest de stockage à basse température : -20 ℃/96h/arrêtTest de stockage à haute température : 60℃/96h/arrêtTest à haute température de stockage du véhicule : 85℃/96h/arrêtChoc thermique : -40℃(30min)←→80℃(30min)/10cycleTest de chaleur humide : 40℃/95%R.H./48h/veilleTest de cycle chaud et humide : 40℃/95%R.H./1h→rampe :1℃/min→-10℃/1h, 20 cycles, veilleTest de chaleur humide : 40℃/95%R.H./48h/veilleTest de cycle chaud et humide : 40℃/95%R.H./1h→rampe :1℃/min→-10℃/1h, 20 cycles, veilleTest de résistance aux intempéries :Simulation des conditions naturelles les plus sévères, test d'effet solaire thermique, chaque cycle de 24 heures, 8 heures d'exposition continue, 16 heures pour garder l'obscurité, chaque cycle de rayonnement de 8,96 kWh/m2, un total de 10 cycles.Essai au brouillard salin :Solution de chlorure de sodium à 5 %/Température de l'eau 35°C/PH 6,5~7,2/24h/Arrêt → Coque d'essuyage à l'eau pure →55°C/0,5h→ Test de fonctionnement : après 2 heures, après 40/80 %R.H./168h.Test d'égouttement : selon la norme IEC60529, conformément à l'indice d'étanchéité IPX2, peut empêcher les gouttelettes d'eau tombant à un angle inférieur à 15 degrés de pénétrer dans la tablette et de causer des dommages. Conditions de test : débit d'eau 3 mm/min, 2,5 min à chaque position, point de contrôle : après test, 24 heures plus tard, veille pendant 1 semaine.Test de poussière :Selon IEC60529, conformément à la classe de poussière IP5X, ne peut pas empêcher complètement l'entrée de poussière mais n'affecte pas l'appareil devrait être l'action et anquan, en plus des tablettes, il existe actuellement de nombreux produits 3C portables mobiles personnels couramment utilisés normes de poussière , tels que : téléphones portables, appareils photo numériques, MP3, MP4... Attendons.Conditions:Échantillon de poussière 110 mm/3 ~ 8 h/test pour un fonctionnement dynamiqueAprès le test, un microscope est utilisé pour détecter si des particules de poussière pénètrent dans l'espace intérieur de la tablette.Test de coloration chimique :Confirmer les composants externes liés à la tablette, confirmer la résistance chimique des produits chimiques ménagers, produits chimiques : crème solaire, rouge à lèvres, crème pour les mains, anti-moustique, huile de cuisson (huile de salade, huile de tournesol, huile d'olive... Etc), la durée du test est de 24 heures, vérifiez la couleur, la brillance, la douceur de la surface... Etc., et confirmez s'il y a des bulles ou des fissures.Essai mécanique :Tester la solidité de la structure mécanique de la tablette informatique et la résistance à l’usure des composants clés ; Comprend principalement le test de vibration, le test de chute, le test d'impact, le test de prise et le test d'usure... Etc.Test de chute : La hauteur de 130 cm, chute libre sur la surface lisse du sol, chaque côté est tombé 7 fois, 2 côtés au total 14 fois, tablette en état de veille, chaque chute, le fonctionnement du produit testé est vérifié.Test de chute répété : la hauteur de 30 cm, chute libre sur la surface lisse et dense de 2 cm d'épaisseur, chaque côté est tombé 100 fois, chaque intervalle de 2 s, 7 côtés au total 700 fois, toutes les 20 fois, vérifiez le fonctionnement du produit expérimental, la tablette est en état de pouvoir.Test de vibration aléatoire : fréquence 30 ~ 100 Hz, 2G, axial : trois axes. Temps : 1 heure dans chaque sens, pour un total de trois heures, la tablette est en mode veille.Test de résistance aux chocs de l'écran : Une boule de cuivre de 11φ/5,5 g est tombée sur la surface centrale d'un objet de 1 m à une hauteur de 1,8 m et une boule d'acier inoxydable de 3ψ/9 g est tombée à une hauteur de 30 cm.Durabilité de l’écriture sur écran : plus de 100 000 mots (largeur R0,8 mm, pression 250g)Durabilité de l’écran tactile : 1 million, 10 millions, 160 millions, 200 millions de fois ou plus (largeur R8mm, dureté 60°, pression 250g, 2 fois par seconde)Test de presse à plat sur écran : le diamètre du bloc de caoutchouc est de 8 mm, la vitesse de pression est de 1,2 mm/min, la direction verticale est de 5 kg, appuyez à plat sur la fenêtre 3 fois, à chaque fois pendant 5 secondes, l'écran doit s'afficher normalement.Test de presse à plat avant écran : Toute la zone de contact, la direction de la force verticale de 25 kg, appuyez à plat sur chaque côté de la tablette, pendant 10 secondes, appuyez à plat 3 fois, il ne devrait y avoir aucune anomalie.Prise des écouteurs et test de retrait : Insérez l'écouteur verticalement dans le trou de l'écouteur, puis retirez-le verticalement. Répétez ceci plus de 5000 foisTest de prise et de traction d'E/S : La tablette est en état de veille et le connecteur de la borne est retiré, un total de plus de 5 000 fois.Test de frottement de poche : Simulez divers matériaux dans une poche ou un sac à dos, la tablette est frottée à plusieurs reprises dans la poche 2 000 fois (le test de friction ajoutera également des particules de poussière mélangées, notamment des particules de poussière, des particules d'herbe yan, des peluches et des particules de papier pour le test de mélange).Test de dureté de l'écran : dureté supérieure à la classe 7 (ASTM D 3363, JIS 5400)Test d'impact sur écran : frapper les côtés et le centre les plus vulnérables du panneau avec une force supérieure à 5㎏
Conditions de température et d'humiditéLa température du point de rosée Td, dans la teneur en vapeur d'eau de l'air inchangée, maintient une certaine pression, de sorte que le refroidissement de l'air atteigne la température de saturation appelée température du point de rosée, appelée point de rosée, l'unité est exprimée en ° C ou ℉. C'est en fait la température à laquelle la vapeur d'eau et l'eau sont en équilibre. La différence entre la température réelle (t) et la température du point de rosée (Td) indique le degré de saturation de l'air. Lorsque t>Td, cela signifie que l'air n'est pas saturé, lorsque t=Td, il est saturé, et lorsque t
Dépistage des contraintes cycliques de température (1)Dépistage du stress environnemental (ESS)Le dépistage des contraintes consiste à utiliser des techniques d'accélération et des contraintes environnementales inférieures à la limite de résistance de conception, telles que : brûlage, cycles de température, vibrations aléatoires, cycle d'alimentation... En accélérant la contrainte, les défauts potentiels du produit apparaissent [matériau potentiel des pièces défauts, défauts de conception, défauts de processus, défauts de processus], et éliminer les contraintes résiduelles électroniques ou mécaniques, ainsi que les condensateurs parasites entre les cartes de circuits imprimés multicouches, l'étape de mort précoce du produit dans la courbe du bain est supprimée et réparée à l'avance , de sorte que le produit grâce à un dépistage modéré, enregistre la période normale et la période de déclin de la courbe de la baignoire pour éviter le produit en cours d'utilisation, le test de stress environnemental conduit parfois à une défaillance, entraînant des pertes inutiles. Bien que l'utilisation du dépistage de stress ESS augmente le coût et le temps, pour améliorer le rendement de livraison du produit et réduire le nombre de réparations, il y a un effet significatif, mais le coût total sera réduit. En outre, la confiance des clients sera également améliorée, généralement pour les parties électroniques des méthodes de dépistage des contraintes sont la pré-combustion, le cycle de température, la haute température, la basse température, la méthode de dépistage des contraintes des circuits imprimés PCB est le cycle de température, pour le coût électronique du Le dépistage des contraintes est : la pré-combustion de l'alimentation, les cycles de température, les vibrations aléatoires, en plus du dépistage des contraintes lui-même est une étape du processus, plutôt qu'un test, le dépistage représente 100 % de la procédure du produit.Étape du produit applicable à l'évaluation des contraintes: Étape de R&D, étape de production de masse, avant la livraison (le test de dépistage peut être effectué sur les composants, les dispositifs, les connecteurs et autres produits ou sur l'ensemble du système de machine, selon différentes exigences, il peut avoir différentes contraintes de dépistage)Comparaison du dépistage du stress :un. Le dépistage des contraintes de pré-combustion (Burn in) à haute température constante est la méthode couramment utilisée par l'industrie informatique électronique actuelle pour précipiter les défauts des composants électroniques, mais cette méthode ne convient pas au dépistage des pièces (PCB, IC, résistance, condensateur), selon les statistiques. , le nombre d'entreprises aux États-Unis qui utilisent des cycles de température pour filtrer les pièces est cinq fois plus élevé que le nombre d'entreprises qui utilisent une précuisson constante à haute température pour filtrer les composants.B. GJB/DZ34 indique la proportion de défauts de sélection du cycle de température et du tamis vibrant aléatoire, la température représentait environ 80 %, les vibrations représentaient environ 20 % des défauts de divers produits.c. Les États-Unis ont mené une enquête auprès de 42 entreprises. Les contraintes vibratoires aléatoires peuvent éliminer 15 à 25 % des défauts, tandis que le cycle de température peut en éliminer 75 à 85 %, si la combinaison des deux peut atteindre 90 %.d. La proportion de types de défauts de produits détectés par les cycles de température : marge de conception insuffisante : 5 %, erreurs de production et de fabrication : 33 %, pièces défectueuses : 62 %Description de l'induction de défauts du dépistage des contraintes cycliques en température :La cause de la défaillance du produit induite par les cycles de température est la suivante : lorsque la température varie entre les températures extrêmes supérieure et inférieure, le produit produit une expansion et une contraction alternées, entraînant une contrainte et une déformation thermiques dans le produit. S'il existe une échelle thermique transitoire (non-uniformité de la température) à l'intérieur du produit, ou si les coefficients de dilatation thermique des matériaux adjacents à l'intérieur du produit ne correspondent pas, ces contraintes et déformations thermiques seront plus drastiques. Ces contraintes et déformations sont plus importantes au niveau du défaut, et ce cycle fait que le défaut devient si important qu'il peut éventuellement provoquer une défaillance structurelle et générer une panne électrique. Par exemple, un trou traversant fissuré par galvanoplastie finit par se fissurer complètement autour de lui, provoquant un circuit ouvert. Le cycle thermique permet le soudage et le placage à travers les trous des cartes de circuits imprimés... Le dépistage des contraintes cycliques en température est particulièrement adapté aux produits électroniques dotés d'une structure de circuit imprimé.Le mode défaut déclenché par le cycle de température ou l'impact sur le produit est le suivant :un. L'expansion de diverses fissures microscopiques dans le revêtement, le matériau ou le filb. Desserrer les joints mal collésc. Desserrer les joints mal connectés ou rivetésd. Détendez les raccords pressés avec une tension mécanique insuffisantee. Augmente la résistance de contact des joints de soudure de mauvaise qualité ou provoque un circuit ouvertf. Particules, pollution chimiqueg. Défaillance du jointh. Problèmes d'emballage, tels que le collage des revêtements protecteursje. Court-circuit ou circuit ouvert du transformateur et de la bobinej. Le potentiomètre est défectueuxk. Mauvaise connexion des points de soudure et de soudurel. Contact de soudage à froidm. Carte multicouche due à une mauvaise manipulation d'un circuit ouvert, d'un court-circuitn. Court-circuit du transistor de puissanceo. Condensateur, transistor défectueuxp. Défaillance du circuit intégré à double rangéeq. Un boîtier ou un câble qui est presque en court-circuit en raison de dommages ou d'un assemblage incorrectr. Casse, casse, éraflure du matériel dû à une mauvaise manipulation... Etc.s. pièces et matériaux hors tolérancest. résistance rompue en raison du manque de revêtement tampon en caoutchouc synthétiquetoi. Les poils du transistor participent à la mise à la terre de la bande métalliquev. Rupture du joint d'isolation en mica, entraînant un court-circuit du transistorw. Une mauvaise fixation de la plaque métallique de la bobine de régulation entraîne un débit irrégulierX. Le tube à vide bipolaire est ouvert intérieurement à basse températurey. Court-circuit indirect de la bobinez. Bornes non mises à la terrea1. Dérive des paramètres du composanta2. Les composants sont mal installésa3. Composants mal utilisésa4. Défaillance du jointIntroduction de paramètres de contrainte pour le dépistage des contraintes cycliques en température :Les paramètres de contrainte du dépistage des contraintes cycliques de température comprennent principalement les éléments suivants : plage extrême de températures élevées et basses, temps de séjour, variabilité de la température, numéro de cycle.Plage extrême de haute et basse température: plus la plage de température extrême haute et basse est grande, moins de cycles sont nécessaires, plus le coût est faible, mais ne peut pas dépasser la limite du produit, ne provoque pas de nouveau principe de défaut, la différence entre le Les limites supérieure et inférieure du changement de température ne sont pas inférieures à 88 °C, la plage de changement typique est de -54 °C à 55 °C.Temps de séjour : De plus, le temps de séjour ne peut pas être trop court, sinon il est trop tard pour que le produit testé produise des changements de contrainte de dilatation thermique et de contraction, comme pour le temps de séjour, le temps de séjour des différents produits est différent, vous peut se référer aux exigences des spécifications pertinentes.Nombre de cycles : Quant au nombre de cycles de dépistage des contraintes cycliques en température, il est également déterminé en tenant compte des caractéristiques du produit, de la complexité, des limites supérieures et inférieures de température et du taux de dépistage, et le nombre de dépistage ne doit pas être dépassé, sinon cela entraînerait nuire inutilement au produit et ne peut pas améliorer le taux de dépistage. Le nombre de cycles de température varie de 1 à 10 cycles [criblage ordinaire, criblage primaire] à 20 à 60 cycles [criblage de précision, criblage secondaire], pour l'élimination des défauts de fabrication les plus probables, environ 6 à 10 cycles peuvent être efficacement éliminés , en plus de l'efficacité du cycle de température, dépend principalement de la variation de température de la surface du produit, plutôt que de la variation de température à l'intérieur de la boîte de test.Il existe sept principaux paramètres influençant le cycle de température :(1) Plage de température(2) Nombre de cycles(3) Taux de température de Chang(4) Temps de séjour(5) Vitesses du flux d'air(6) Uniformité de la contrainte(7) Test de fonctionnement ou non (Condition de fonctionnement du produit)
Test combiné IEC-60068-2 de condensation, de température et d'humiditéDifférence entre les spécifications des tests de chaleur humide IEC60068-2Dans la spécification IEC60068-2, il existe un total de cinq types de tests de chaleur humide, en plus des tests courants de 85 ℃/85 % R.H., 40 ℃/93 % R.H. En plus de la température et de l'humidité élevées à point fixe, il existe deux autres tests spéciaux [IEC60068-2-30, IEC60068-2-38], ces deux cycles alternant humide et humide et un cycle combiné de température et d'humidité, donc le test Le processus modifiera la température et l'humidité, et même plusieurs groupes de liens et de cycles de programme, appliqués aux semi-conducteurs, pièces, équipements IC, etc. Pour simuler le phénomène de condensation extérieure, évaluez la capacité du matériau à empêcher la diffusion d'eau et de gaz et accélèrez la durée de vie du produit. tolérance à la détérioration, les cinq spécifications ont été organisées dans un tableau comparatif des différences entre les spécifications des tests humides et thermiques, et les points de test ont été expliqués en détail pour le test en cycle combiné humide et thermique, ainsi que les conditions et points de test de GJB dans les tests humides et thermiques ont été complétés.Test de cycle de chaleur humide alterné IEC60068-2-30Ce test utilise la technique de test consistant à maintenir l'humidité et la température en alternance pour faire pénétrer l'humidité dans l'échantillon et provoquer de la condensation (condensation) sur la surface du produit à tester, afin de confirmer l'adaptabilité du composant, de l'équipement ou d'autres produits dans utilisation, transport et stockage sous la combinaison de changements cycliques d'humidité élevée et de température et d'humidité. Cette spécification convient également aux grands échantillons de test. Si l'équipement et le processus de test doivent conserver les composants de chauffage de puissance pour ce test, l'effet sera meilleur que celui de la norme IEC60068-2-38, la température élevée utilisée dans ce test en a deux (40 ° C, 55 ° C), la 40 ° C doit répondre à la plupart des environnements à haute température du monde, tandis que 55 ° C répondent à tous les environnements à haute température du monde, les conditions de test sont également divisées en [cycle 1, cycle 2], en termes de gravité, [Cycle 1] est supérieur au [Cycle 2].Adapté aux produits secondaires : composants, équipements, divers types de produits à testerEnvironnement de test : la combinaison de changements cycliques d'humidité élevée et de température produit de la condensation, et trois types d'environnements peuvent être testés [utilisation, stockage, transport ([l'emballage est facultatif)]Test de stress : la respiration provoque l’invasion de la vapeur d’eauSi l'alimentation est disponible: ouiNe convient pas pour : les pièces trop légères et trop petitesProcessus de test et inspection et observation post-test : vérifiez les changements électriques après l'humidité [ne retirez pas l'inspection intermédiaire]Conditions de test : Humidité : 95 % H.R. [Changement de température après maintien d'une humidité élevée] (basse température 25 ± 3 ℃ ← → haute température 40 ℃ ou 55 ℃)Vitesse de montée et de refroidissement : chauffage (0,14 ℃/min), refroidissement (0,08 ~ 0,16 ℃/min)Cycle 1 : Lorsque l'absorption et les effets respiratoires sont des caractéristiques importantes, l'échantillon testé est plus complexe [humidité non inférieure à 90 % H.R.]Cycle 2 : En cas d'absorption et d'effets respiratoires moins évidents, l'échantillon à tester est plus simple [l'humidité n'est pas inférieure à 80 % H.R.]Tableau de comparaison des différences de spécifications de test de chaleur humide IEC60068-2Pour les produits de pièces de type composant, une méthode de test combinée est utilisée pour accélérer la confirmation de la résistance de l'échantillon de test à la dégradation dans des conditions de température, d'humidité élevée et de basse température. Cette méthode de test est différente des défauts du produit causés par la respiration [rosée, absorption d'humidité] de la norme IEC60068-2-30. La sévérité de ce test est supérieure à celle des autres tests de cycle de chaleur humide, car il y a plus de changements de température et de [respiration] pendant le test, la plage de température du cycle est plus grande [de 55℃ à 65℃] et le taux de changement de température du cycle de température est plus rapide [montée en température : 0,14°C/min devient 0,38°C/min, 0,08°C/min devient 1,16°C/min], en outre, différent du cycle général de chaleur humide, le cycle basse température Une condition de -10 ° C est ajoutée pour accélérer le rythme respiratoire et faire geler l'eau condensée dans l'espace du substitut, ce qui est la caractéristique de cette spécification de test. Le processus de test permet le test de puissance et le test de puissance de charge appliquée, mais il ne peut pas affecter les conditions de test (fluctuation de température et d'humidité, taux de montée et de refroidissement) en raison du chauffage du produit secondaire après la mise sous tension. En raison du changement de température et d'humidité pendant le processus de test, il ne peut pas y avoir de gouttelettes d'eau de condensation sur le dessus de la chambre de test vers le produit secondaire.Convient aux produits secondaires : composants, étanchéité des composants métalliques, étanchéité des extrémités de plombEnvironnement de test : combinaison de conditions de température élevée, d’humidité élevée et de basse températureTest de stress : respiration accélérée + eau geléeS'il peut être alimenté : il peut être alimenté et une charge électrique externe (cela ne peut pas affecter les conditions de la chambre d'essai en raison du chauffage électrique)Non applicable : Ne peut remplacer la chaleur humide et la chaleur humide alternée, ce test est utilisé pour produire des défauts différents de la respirationProcessus de test et inspection et observation post-test : vérifiez les changements électriques après l'humidité [vérifiez dans des conditions d'humidité élevée et retirez après le test]Conditions de test : cycle de chaleur humide (25 s'il vous plaît - 65 + 2 ℃ / 93 + / - 3% R.H.) s'il vous plaît - cycle basse température (25 s'il vous plaît - 65 + 2 ℃ / 93 + 3% R.H. - - 10 + 2 ℃) X5cycle = 10 cyclesVitesse de montée et de refroidissement : chauffage (0,38 ℃/min), refroidissement (1,16 ℃/min)Cycle de chaleur et d'humidité (25←→65±2℃/93±3%R.H.)Cycle à basse température (25←→65±2℃/93±3%R.H. →-10±2℃)Test de chaleur humide GJB150-09Instructions : Le test humide et thermique du GJB150-09 vise à confirmer la capacité de l'équipement à résister à l'influence d'une atmosphère chaude et humide, adapté aux équipements stockés et utilisés dans des environnements chauds et humides, aux équipements sujets à une humidité élevée ou aux équipements pouvant ont des problèmes potentiels liés à la chaleur et à l’humidité. Des endroits chauds et humides peuvent se produire tout au long de l'année sous les tropiques, de façon saisonnière aux latitudes moyennes et dans les équipements soumis à des changements combinés de pression, de température et d'humidité, avec un accent particulier sur 60 °C/95 % d'humidité relative. Cette température et cette humidité élevées ne se produisent pas dans la nature et ne simulent pas non plus l'effet d'humidité et de chaleur après le rayonnement solaire, mais elles peuvent détecter les parties de l'équipement présentant des problèmes potentiels, mais elles ne peuvent pas reproduire l'environnement complexe de température et d'humidité, évaluer le effet à long terme et ne peut pas reproduire l’impact de l’humidité lié à l’environnement à faible humidité.Équipement approprié pour les tests de cycle combiné de condensation, de congélation humide et de chaleur humide : chambre d'essai à température et humidité constantes
Test de cyclage de la températureCyclisme de température, afin de simuler les conditions de température rencontrées par différents composants électroniques dans l'environnement d'utilisation réel, la modification de la plage de différence de température ambiante et le changement rapide de température de montée et de descente peuvent fournir un environnement de test plus strict, mais il faut noter que des effets supplémentaires peut être causé par des tests de matériaux. Pour les conditions de test standard internationales pertinentes du test de cycle de température, il existe deux manières de régler le changement de température. La technologie Macroshow fournit une interface de configuration intuitive, que les utilisateurs peuvent facilement configurer en fonction des spécifications. Vous pouvez choisir le temps total de rampe ou régler la vitesse de montée et de refroidissement avec le taux de changement de température par minute.Liste des spécifications internationales pour les essais de cyclage de température :Temps de rampe total (min) : JESD22-A104, MIL-STD-8831, CR200315Variation de température par minute (℃/min) : IEC 60749, IPC-9701, Bellcore-GR-468, MIL-2164Exemple : Test de fiabilité des joints de soudure sans plombInstructions : Pour le test de fiabilité des joints de soudure sans plomb, différentes conditions de test seront également différentes en termes de mode de réglage du changement de température. Par exemple, (JEDEC JESD22-A104) spécifiera le temps de changement de température avec la durée totale [10 min], tandis que d'autres conditions spécifieront le taux de changement de température avec [10 ℃/min], par exemple de 100 ℃ à 0 ℃. Avec un changement de température de 10 degrés par minute, c'est-à-dire que le temps total de changement de température est de 10 minutes.100 ℃ [10 min]← → 0 ℃ [10 min], rampe : 10 ℃/min, 6 500 cycles-40℃[5min]←→125℃ [5min], Rampe : 10min,Contrôle de 200 cycles une fois, test de traction de 2000 cycles [JEDEC JESD22-A104]-40℃(15min)←→125℃(15min), Rampe : 15min, 2000cyclesExemple : éclairage automobile à LED (LED haute puissance)La condition de test du cycle de température des phares de voiture à LED est de -40 °C à 100 °C pendant 30 minutes, le temps total de changement de température est de 5 minutes, si converti en taux de changement de température, il est de 28 degrés par minute (28 °C/min ).Conditions de test : -40℃(30min)←→100℃(30min), Rampe : 5min
Équipement de test environnemental de fiabilité combiné à des applications de contrôle et de détection de température multi-pistes
L'équipement de test environnemental comprend une chambre d'essai à température et humidité constantes, une chambre d'essai de choc chaud et froid, une chambre d'essai de cycle de température, pas de four à vent... Ces équipements de test sont tous dans l'environnement simulé de la température, de l'impact de l'humidité sur le produit, pour le savoir. la conception, la production, le stockage, le transport et le processus d'utilisation peuvent apparaître des défauts du produit, auparavant seulement la température de l'air de la zone de test simulée, mais dans les nouvelles normes internationales et les nouvelles conditions de test de l'usine internationale, le début des exigences basées sur la température de l'air ne l'est pas. C'est la température de surface du produit testé. De plus, la température de surface doit également être mesurée et enregistrée de manière synchrone pendant le processus de test pour une analyse post-test. L'équipement d'essai environnemental pertinent doit être combiné avec le contrôle de la température de surface et l'application de la mesure de la température de surface est résumée comme suit.
Application de détection de température de table d'essai de chambre d'essai de température et d'humidité constantes :
Description : Chambre de test de température et d'humidité constantes dans le processus de test, combinée à une détection de température multipiste, une température et une humidité élevées, une condensation (condensation), une température et une humidité combinées, un cycle de température lent... Pendant le processus de test, le capteur est apposé sur la surface du produit testé, qui peut être utilisé pour mesurer la température de surface ou la température interne du produit testé. Grâce à ce module de détection de température multipiste, les conditions définies, la température et l'humidité réelles, la température de surface du produit testé, ainsi que les mêmes mesures et enregistrements peuvent être intégrés dans un fichier de courbe synchrone pour un stockage et une analyse ultérieurs.
Applications de contrôle et de détection de la température de surface de la chambre d'essai de choc thermique : [temps de séjour basé sur le contrôle de la température de surface], [enregistrement de mesure de la température de surface du processus de choc thermique]
Description : Le capteur de température à 8 rails est fixé à la surface du produit testé et appliqué au processus de choc thermique. Le temps de séjour peut être décompté en fonction de l'arrivée de la température de surface. Pendant le processus d'impact, les conditions de prise, la température de test, la température de surface du produit de test, ainsi que les mêmes mesures et enregistrements peuvent être intégrés dans une courbe synchrone.
Application de contrôle et de détection de la température de surface de la chambre d'essai de cycle de température : [La variabilité de la température du cycle de température et le temps de séjour sont contrôlés en fonction de la température de surface du produit testé]
Description : Le test de cycle de température est différent du test de choc thermique. Le test de choc thermique utilise l'énergie maximale du système pour effectuer des changements de température entre des températures élevées et basses, et son taux de changement de température peut atteindre 30 ~ 40 ℃/min. Le test du cycle de température nécessite un processus de changements de température élevés et faibles, et sa variabilité de température peut être réglée et contrôlée. Cependant, les nouvelles spécifications et les conditions de test des fabricants internationaux ont commencé à exiger que la variabilité de la température se réfère à la température de surface du produit testé, et non à la température de l'air, et au contrôle actuel de la variabilité de la température des spécifications du cycle de température. Selon les spécifications de surface du produit testé sont [JEDEC-22A-104F, IEC60749-25, IPC9701, ISO16750, AEC-Q100, LV124, GMW3172]... De plus, le temps de séjour des températures élevées et basses peut également être basé sur la surface d’essai, plutôt que la température de l’air.
Applications de contrôle et de détection de la température de surface de la chambre d'essai de dépistage des contraintes cycliques en température :
Instructions : Machine d'essai de dépistage des contraintes du cycle de température, combinée à une mesure de température multi-rails, dans la variabilité de la température du dépistage des contraintes, vous pouvez choisir d'utiliser [température de l'air] ou [température de la surface du produit testé] pour contrôler la variabilité de la température, en plus, dans le processus résident à haute et basse température, le temps réciproque peut également être contrôlé en fonction de la surface du produit testé. Conformément aux spécifications pertinentes (GJB1032, IEST) et aux exigences des organisations internationales, selon la définition de GJB1032 dans le temps de séjour et le point de mesure de la température de dépistage des contraintes, 1. Le nombre de thermocouples fixés sur le produit ne doit pas être inférieur à 3, et le point de mesure de la température du système de refroidissement ne doit pas être inférieur à 6, 2. Assurez-vous que la température des 2/3 des thermocouples sur le produit est réglée à ± 10 ℃, en outre, conformément aux exigences de l'IEST (International Association for Environmental Science and Technology), le temps de séjour doit atteindre le temps de stabilisation de la température plus 5 minutes ou le temps de test de performance.
Application de détection de température de surface sans four à air (chambre d'essai à convection naturelle) :
Description : Grâce à la combinaison d'un four sans vent (chambre d'essai à convection naturelle) et d'un module de détection de température multipiste, l'environnement de température sans ventilateur (convection naturelle) est généré et le test de détection de température pertinent est intégré. Cette solution peut être appliquée au test de température ambiante réelle des produits électroniques (tels que : serveur Cloud, 5G, intérieur de véhicule électrique, intérieur sans environnement de climatisation, onduleur solaire, grand téléviseur LCD, partage Internet domestique, bureau 3C, ordinateur portable, ordinateur de bureau. , console de jeux....... Etc.).