La relation entre l'altitude de l'atmosphère standard et la température et la pression de l'airL'atmosphère standard mentionnée ici fait référence à « l'atmosphère standard de l'OACI de 1964 » adoptée par l'Organisation de l'aviation civile internationale. En dessous d'une altitude de 32 km, c'est la même chose que "1976, atmosphère standard américaine". Les changements de température de l'air près de la surface (en dessous de 32 km) sont :Sol : La température de l'air est de 15,0℃, la pression de l'air P=1013,25mb= 0,101325MPaTaux de changement de température du sol à l'altitude 11 km : -6,5 ℃/kmSur l'interface 11km :La température de l'air est de -56,5 ℃ et la pression de l'air P = 226,32 Mo.Taux de changement de température à des altitudes de 11 à 20 km : 0,0 ℃/kmTaux de changement de température à une altitude de 20 à 32 km : +1,0/kmLe tableau suivant répertorie les valeurs de température et de pression de l'atmosphère standard à différentes altitudes. Dans le tableau, "gpm" est l'altimètre, et son signe négatif représente l'altitudeGpmTempérature℃Pression atmosphérique (mb)GpmTempérature℃Pression atmosphérique (mb)GpmTempérature℃Pression atmosphérique (mb)-40017.61062.24800-16.2554,810000-50,0264,4-20016.31037,55000-17,5540.210200-51,3256.4015,01013.35200-18,8525.910400-52,6248,620013.7989,55400-20.1511.910600-53,9241,040012.4966.15600-21,4498,310800-55,2233,660011.1943.25800-22,7484,911000-56,5226.38009.8920,86000-24,0471,811500-56,5209.210008.5898,76200-25,3459,012000-56,5193.312007.2877.26400-26,6446,512500-56,5178,714005.9856,06600-27,9434.313000-56,5165.116004.6835.26800-29,2422.313500-56,5152,618003.3814.97000-30,5410.614000-56,5141,020002.0795,07200-31,8399,214500-56,5130,322000,7775.47400-33,1388,015000-56,5120,52400-0,6756.37600-34,4377.115500-56,5111.32600-1,9737,57800-35,7366.416000-56,5102,92800-3.2719.18000-37,0356,017000-56,587,93000-4,5701.18200-38,3345,818000-56,575,03200-5,8683.48400-39,6335,919000-56,564.13400-7.1666.28600-40,9326.220000-56,554,73600-8.4649.28800-42,2316.722000-54,540,03800-9,7632,69000-43,5307.424000-52,529.34000-11.0616.49200-44,8298,426000-50,521,54200-12.3600,59400-46,1289,628000-48,515.94400-13,6584,99600-47,4281,030000-46,511.74600-14,9569,79800-48,7272,632000-44,58.7Relation de conversion d'unité1mbar=100Pa=0,1KPa=0,0001 MPa1 pied = 0,3048 m = 304,8 mm55 000 pieds * 0,3048 = 16 764 mLab Companion s'est concentré sur la production d'équipements de test environnemental de fiabilité pendant 19 ans et a aidé avec succès 18 000 entreprises à tester la fiabilité et la performance environnementale des produits et des matériaux.Les principaux produits sont : chambre d'essai à haute température, chambre d'essai de température et d'humidité élevées et basses, chambre d'essai environnemental sans rendez-vous, chambre d'essai de cyclage rapide de la température, chambre d'essai de choc thermique, chambre d'essai basse pression haute et basse température, vibration de la chambre complète et d'autres solutions de fabrication d'équipements de test pour aider les entreprises à R&D plus grandes et plus fortes !Si vous avez besoin d'en savoir plus sur les produits de la chambre d'essai environnemental, vous pouvez rechercher sur le site officiel de "Lab Companion", n'hésitez pas à nous contacter pour consultation, nous pouvons vous fournir des conseils et des orientations techniques professionnels individuels. .
Schéma de test de simulation environnementale de pile à combustible à hydrogène
À l’heure actuelle, le modèle de développement économique basé sur la consommation d’énergies non renouvelables à base de charbon, de pétrole et de gaz naturel a conduit à une pollution environnementale et à un effet de serre de plus en plus importants. Afin de parvenir au développement durable de l'être humain, une relation harmonieuse entre l'homme et la nature a été établie. Le développement des énergies vertes durables est devenu un sujet de grande préoccupation dans le monde.
En tant qu'énergie propre capable de stocker l'énergie résiduelle et de favoriser la transformation de l'énergie fossile traditionnelle en énergie verte, l'énergie hydrogène a une densité énergétique (140 MJ/kg) qui est 3 fois celle du pétrole et 4,5 fois celle du charbon, et est considérée comme une direction technologique subversive de la future révolution énergétique. La pile à combustible à hydrogène est le moyen clé pour réaliser la conversion de l’énergie hydrogène en utilisation de l’énergie électrique. Après que l'objectif de neutralité carbone et de pic carbone « double carbone » ait été proposé, il a attiré une nouvelle attention dans la recherche fondamentale et les applications industrielles.
La chambre d'essai environnemental de pile à combustible à hydrogène de Lab Companion répond : pile et module de pile à combustible : 1 W ~ 8 kW, moteur à pile à combustible : 30 kW ~ 150 kW Test de démarrage à froid à basse température : -40 ~ 0 ℃ Test de stockage à basse température : -40 ~ 0 ℃ élevé test de stockage de température : 0~100℃.
Introduction de la chambre d’essai environnemental des piles à combustible à hydrogène
Le produit adopte une conception modulaire fonctionnelle, antidéflagrante et antistatique, et répond aux normes de test pertinentes. Le produit présente les caractéristiques d'une fiabilité élevée et d'un avertissement de sécurité complet, ce qui convient au test du système de réacteur et de moteur à pile à combustible. Puissance applicable jusqu'à 150 kW pour le système de pile à combustible, test à basse température (stockage, démarrage, performances), test à haute température (stockage, démarrage, performances), test de chaleur humide (température et humidité élevées).
Pièces de sécurité :
1. Caméra antidéflagrante : enregistrez en temps réel la situation de test complète dans la boîte, facile à optimiser ou à ajuster à temps.
2. Détecteur de flamme Uv : détecteur d'incendie à grande vitesse, précis et intelligent, identification précise des signaux de flamme.
3. Sortie d'évacuation d'air d'urgence : évacuez le gaz combustible toxique dans la boîte pour assurer la sécurité du test.
4. Système de détection et d'alarme de gaz : identification intelligente et rapide du gaz combustible, génère automatiquement des signaux d'alarme.
5. Unité froide à mécanisme à vis unipolaire double parallèle : elle présente les caractéristiques d'une fonction de classification, d'une grande puissance, d'un faible encombrement, etc.
6. Système de pré-refroidissement du gaz : contrôlez rapidement les exigences de température du gaz pour garantir des conditions de démarrage à froid.
7. Support d'essai de pile : support d'essai de pile en acier inoxydable, équipé d'un système de refroidissement auxiliaire de refroidissement par eau.
Projet de test de système de pile à combustible
Projet de test de système de pile à combustible
Test d'étanchéité à l'air d'un moteur à pile à combustible
Qualité du système de production d’électricité
Le volume de la pile de batterie
Détection de résistance d'isolement
Test caractéristique de départ
Test de démarrage à puissance nominale
Test caractéristique à l'état d'équilibre
Test des caractéristiques de puissance nominale
Test caractéristique de puissance de crête
Test de caractéristique de réponse dynamique
Test d'adaptabilité à haute température
Test de performance du système de moteur à pile à combustible
Essai de résistance aux vibrations
Test d'adaptabilité à basse température
Test de démarrage (basse température)
Test de performance de production d'électricité
Test d'arrêt
Test de stockage à basse température
Procédures de démarrage et de fonctionnement à basse température
/
/
Éléments de test des réacteurs et des modules
Éléments de test des réacteurs et des modules
Inspection de routine
Test de fuite de gaz
Essai de fonctionnement normal
Autoriser le test de pression de travail
Test de pression du système de refroidissement
Test de canalisation du gaz
Essais de résistance aux chocs et aux vibrations
Test de surcharge électrique
Test de rigidité diélectrique
Test de différence de pression
Test de concentration de gaz inflammables
Essai de surpression
Test de fuite d'hydrogène
Test du cycle de congélation/décongélation
Test de stockage à haute température
Test d'étanchéité à l'air
Test de manque de carburant
Test de carence en oxygène/oxydant
Essai de court-circuit
Manque de refroidissement/test de refroidissement altéré
Test du système de surveillance des intrusions
Essai au sol
Test de démarrage
Test de performance de production d'électricité
Test d'arrêt
Test de stockage à basse température
Test de démarrage à basse température
Normes applicables aux produits :
Conditions techniques de la chambre d'essai à haute et basse température GB/T 10592-2008
Conditions techniques de la chambre d'essai d'humidité GB/T 10586-2006
GB/T31467.3-2015
GB/T31485-2015
GB/T2423.1-2208
GB/T2423.2-2008
GB/T2423.3-2006
GB/T2523.4-2008
Test de fiabilité des lampes de véloLes vélos sont dans l'environnement social des prix élevés du pétrole et de la protection de l'environnement, avec la protection de l'environnement, le fitness, la vie lente... Tels que les équipements sportifs récréatifs multifonctionnels, les éclairages de vélo sont un élément indispensable et important de la conduite nocturne à vélo, si le achat de feux de vélo à faible coût et non après un test de fiabilité, conduite de nuit ou à travers le tunnel, non seulement pour le cycliste, cela constitue une menace sérieuse pour la sécurité de la vie, Pour la conduite, des accidents de collision peuvent survenir parce que le conducteur ne peut pas voir le cycliste , il est donc important d'avoir des éclairages de vélo qui réussissent le test de fiabilité.Raisons de la panne de la lampe de vélo :un. Déformation, fragilisation et décoloration de la coque de la lampe causée par la température élevée de la lampeb. jaunissement et fragilisation de la coque de la lampe causés par l'exposition extérieure aux ultravioletsc. Monter et descendre la colline en raison des changements de température élevés et bas dans l'environnement causés par une panne de lamped. Consommation électrique anormale des phares de voituree. Les lumières tombent en panne après une longue période de pluief. Une panne à chaud se produit lorsque les lumières sont allumées pendant une longue périodeg. Pendant la conduite, le luminaire se détache, provoquant la chute de la lampeh. Défaillance du circuit des lampes causée par les vibrations et la pente de la routeClassification des tests de lampes de vélo :Test environnemental, test mécanique, test de rayonnement, test électriqueTest caractéristique initial :Prenez-en 30, allumez la lampe avec une alimentation CC en fonction de la tension nominale, une fois les caractéristiques stables, mesurez la distance entre le courant et le centre optique, moins de 10 produits défectueux sont qualifiés, plus de 22 ne sont pas qualifiés, si le Le nombre de produits défectueux est compris entre 11 et 22, 100 autres échantillons sont collectés pour les tests et le nombre de produits défectueux lors de l'inspection initiale est qualifié lorsque le nombre est inférieur à 22. Si le nombre dépasse 22, il est disqualifié.Test de vie : 10 ampoules ont réussi le test caractéristique initial et 8 d’entre elles répondaient aux exigences.Vitesse d'essai de vélo : environnement simulé à 15 km/hTest à haute température (test de température) : 80℃, 85℃, 90℃Essai à basse température : -20 ℃Cycle de température : 50 ℃ (60 min) → température normale (30 min) → 20 (60 min) → température normale (30 min), 2 cyclesTest de chaleur humide : 30 ℃/95 % RH/48 heuresTest de dépistage du stress : Haute température : 85℃←→ Basse température : -25℃, temps de maintien : 30min, cycle : 5cycles, mise sous tension, temps : ≧24hTest au brouillard salin Shell : Concentration de sel de 20 ℃/15 %/pulvérisation pendant 6 heures, méthode de détermination : la surface de la coque ne doit pas présenter de rouille évidente.Test d'étanchéité :Description : L'indice IPX des lampes résistantes à la pluie doit être d'au moins IPX3 ou supérieur.IPX3 (Résistance à l'eau) : Déposez 10 litres d'eau verticalement d'une hauteur de 200CM à 60˚ (durée du test : 10 minutes)IPX4(anti-eau, anti-éclaboussures) : 10 litres d'eau tombent de 30 ~ 50CM dans n'importe quelle direction (durée du test : 10 minutes)IPX5 : 3 m 12,5 L d'eau de n'importe quelle direction [eau faible] (durée du test : 3 minutes)IPX6 : 3 m Pulvérisation puissante 30 litres dans n'importe quelle direction [eau forte, pression : 100 KPa] (durée du test : 3 minutes)IPX7 (étanche à vie) : il peut être utilisé pendant 30 minutes sous 1 m dans l'eauEssai de vibrations : nombre de vibrations 11,7 ~ 20 Hz/amplitude : 11 ~ 4 mm/temps : haut et bas 2h, environ 2h, 2h avant et après 2h/accélération 4 ~ 5gTest de chute : 1 mètre (chute manuelle), 2 mètres (chute de vélo, chute du cadre)/sol en béton/quatre fois/quatre côtésEssai d'impact : Plateforme plate en bois de 10 mm/Distance : 1 m/diamètre 20 mm, masse 36 g, bille en acier, chute libre/surface supérieure et latérale une fois.Impact à basse température : Lorsque l'échantillon est froid jusqu'à -5℃, maintenir cette température pendant trois heures puis effectuer le test d'impactTest d'irradiation : test de luminosité d'irradiation de longue durée, test d'irradiation basse tension, luminosité de la lumière, couleur de la lumièreTri des noms de lampe de vélo :
Conditions de test des ordinateurs portablesL'ordinateur portable depuis le début de l'évolution de l'écran de 12 pouces jusqu'à l'écran rétroéclairé par LED actuel, son efficacité informatique et son traitement 3D, ne seront pas perdus au profit de l'ordinateur de bureau général, et le poids devient de moins en moins lourd, les exigences relatives des tests de fiabilité pour l'ensemble de l'ordinateur portable devient de plus en plus strict, depuis le premier emballage jusqu'au démarrage actuel, en passant par les températures et humidités élevées traditionnelles jusqu'au test de condensation actuel. De la plage de température et d'humidité de l'environnement général au test du désert en tant que condition courante, ce sont les éléments qui doivent être pris en compte dans la production de composants et de conception liés aux ordinateurs portables, les conditions de test des tests environnementaux pertinents collectés jusqu'à présent. sont organisés et partagés avec vous.Test de frappe du clavier :Testez-en un :Go : 1 million de foisPression clé : 0,3 ~ 0,8 (N)Course du bouton : 0,3 ~ 1,5 (mm)Test 2 : Pression des touches : 75 g (± 10 g) Testez 10 touches pendant 14 jours, 240 fois par minute, un total d'environ 4,83 millions de fois, une fois tous les 1 million de fois.Fabricants japonais : 2 à 5 millions de foisFabricant taïwanais 1 : plus de 8 millions de foisFabricant taïwanais 2 : 10 millions de foisTest de traction de l'interrupteur d'alimentation et de la fiche du connecteur :Ce modèle de test simule les forces latérales auxquelles chaque connecteur peut résister en cas d'utilisation anormale. Éléments de test généraux pour ordinateurs portables : USB, 1394, PS2, RJ45, Modem, VGA... Force d'application égale 5 kg (50 fois), tirez et branchez de haut en bas à gauche et à droite.Test de l'interrupteur d'alimentation et de la fiche du connecteur :4000 fois (alimentation)Test d'ouverture et de fermeture du cache écran :Fabricants taïwanais : ouvrent et ferment 20 000 foisFabricant japonais 1 : test d'ouverture et de fermeture 85 000 foisFabricant japonais 2 : ouverture et fermeture 30 000 foisTest du commutateur de veille et de récupération du système :Type de note générale : intervalle de 10 sec, 1000 cyclesFabricant japonais : test du commutateur de veille et de récupération du système 2 000 foisCauses courantes de panne d'un ordinateur portable :☆ Des objets étrangers tombent sur le carnet☆ Tombe de la table pendant l'utilisation☆ Rangez le carnet dans un sac à main ou une valise à roulettes☆ Température extrêmement élevée ou basse température ☆ Utilisation normale (surutilisation)☆ Mauvaise utilisation dans les destinations touristiques☆PCMCIA mal inséré☆ Placez des objets étrangers sur le clavierTest de chute d'arrêt :Type de carnet général :76 cmChute du colis GB : 100 cmOrdinateurs portables de l'armée américaine et japonais : la hauteur de l'ordinateur est de 90 cm de tous les côtés, côtés, coins, un total de 26 côtés.Plateforme :74 cm (emballage requis)Terrain : 90cm (emballage requis)TOSHIBA&BENQ 100 cmTest de chute de démarrage :Japonais : Chute de botte de 10 cmTaïwan :Chute de botte de 74 cmChoc thermique de la carte principale de l'ordinateur portable :Pente 20℃/minNombre de cycles 50cycles (aucune opération pendant l'impact)Les normes techniques et conditions de test de l'armée américaine pour l'achat d'ordinateurs portables sont les suivantes :Test d'impact : Faites tomber l'ordinateur 26 fois de tous les côtés, côtés et coins à une hauteur de 90 cmTest de résistance aux tremblements de terre : 20 Hz ~ 1 000 Hz, fréquence 1 000 Hz ~ 2 000 Hz une fois par heure, vibration continue des axes X, Y et ZTest de température : 0 ℃ ~ 60 ℃ 72 heures de vieillissement au fourTest d'étanchéité : vaporisez de l'eau sur l'ordinateur pendant 10 minutes dans toutes les directions, et le débit de pulvérisation d'eau est de 1 mm par minute.Test de poussière : Pulvériser la concentration de 60 000 mg/par mètre cube de poussière pendant 2 secondes (intervalle de 10 minutes, 10 fois consécutives, durée 1 heure)Conforme aux spécifications militaires MIL-STD-810Test d'étanchéité :Ordinateur portable de l'armée américaine :classe de protection :IP54 (poussière et pluie) J'ai aspergé l'ordinateur d'eau dans toutes les directions pendant 10 minutes à raison de 1 mm par minute.Test anti-poussière :Carnet de l'armée américaine : Pulvériser une concentration de 60 000 mg/m3 de poussière pendant 2 secondes (intervalles de 10 minutes, 10 fois consécutives, durée 1 heure)
Dépistage des contraintes cycliques de température (2)Introduction de paramètres de contrainte pour le dépistage des contraintes cycliques en température :Les paramètres de contrainte du dépistage des contraintes cycliques de température comprennent principalement les éléments suivants : plage extrême de températures élevées et basses, temps de séjour, variabilité de la température, numéro de cycle.Plage extrême de haute et basse température: plus la plage de température extrême haute et basse est grande, moins de cycles sont nécessaires, plus le coût est faible, mais ne peut pas dépasser la limite du produit, ne provoque pas de nouveau principe de défaut, la différence entre le Les limites supérieure et inférieure du changement de température ne sont pas inférieures à 88 °C, la plage de changement typique est de -54 °C à 55 °C.Temps de séjour : De plus, le temps de séjour ne peut pas être trop court, sinon il est trop tard pour que le produit testé produise des changements de contrainte de dilatation thermique et de contraction, comme pour le temps de séjour, le temps de séjour des différents produits est différent, vous peut se référer aux exigences des spécifications pertinentes.Nombre de cycles : Quant au nombre de cycles de dépistage des contraintes cycliques en température, il est également déterminé en tenant compte des caractéristiques du produit, de la complexité, des limites supérieures et inférieures de température et du taux de dépistage, et le nombre de dépistage ne doit pas être dépassé, sinon cela entraînerait nuire inutilement au produit et ne peut pas améliorer le taux de dépistage. Le nombre de cycles de température varie de 1 à 10 cycles [criblage ordinaire, criblage primaire] à 20 à 60 cycles [criblage de précision, criblage secondaire], pour l'élimination des défauts de fabrication les plus probables, environ 6 à 10 cycles peuvent être efficacement éliminés , en plus de l'efficacité du cycle de température, dépend principalement de la variation de température de la surface du produit, plutôt que de la variation de température à l'intérieur de la boîte de test.Il existe sept principaux paramètres influençant le cycle de température :(1) Plage de température(2) Nombre de cycles(3) Taux de température de Chang(4) Temps de séjour(5) Vitesses du flux d'air(6) Uniformité de la contrainte(7) Test de fonctionnement ou non (Condition de fonctionnement du produit)Classification de fatigue par dépistage des contraintes :La classification générale de la recherche sur la fatigue peut être divisée en fatigue de cycle élevé, fatigue de cycle faible et croissance de fissures de fatigue. En ce qui concerne la fatigue à faible cycle, elle peut être subdivisée en fatigue thermique et fatigue isotherme.Acronymes du dépistage du stress :ESS : analyse du stress environnementalFBT : Testeur de cartes fonctionnellesICA : Analyseur de circuitsTIC : Testeur de circuitsLBS : testeur de court-circuit de carte de chargeMTBF : temps moyen entre pannesTemps des cycles de température :a.MIL-STD-2164 (GJB 1302-90) : Dans le test d'élimination des défauts, le nombre de cycles de température est de 10, 12 fois, et dans la détection sans problème, il est de 10 à 20 fois ou de 12 à 24 fois. Afin d'éliminer les défauts de fabrication les plus probables, environ 6 à 10 cycles sont nécessaires pour les éliminer efficacement. 1 à 10 cycles [dépistage général, dépistage primaire], 20 à 60 cycles [dépistage de précision, dépistage secondaire].B.od-hdbk-344 (GJB/DZ34) L'équipement de dépistage initial et le niveau de l'unité utilisent 10 à 20 boucles (généralement ≧10), le niveau composant utilise 20 à 40 boucles (généralement ≧25).Variabilité de température :a.MIL-STD-2164(GJB1032) indique clairement : [Taux de changement de température du cycle de température 5℃/min]B.od-hdbk-344 (GJB/DZ34) Niveau composant 15 °C/min, système 5 °C/minc. Le dépistage des contraintes cycliques en température n'est généralement pas une variabilité de température spécifiée, et son taux de variation en degrés couramment utilisé est généralement de 5 °C/min.
EC-35EXT, Bain supérieur à température constante (306L)ProjetTaperSérieEXTFonctionLa température se produit d'une manièreMéthode au bulbe sec et humidePlage de température-70 ~ +150 ℃Plage de températureEn dessous des + 100℃±0,3 ℃Au-dessus du + 101℃±0,5 ℃Répartition de la température En dessous des + 100℃±0. 7 ℃Au-dessus du + 101℃±1,0 ℃La température baisse le temps+125 ~-55 ℃Dans les 18 points (changement de température moyen de 10 ℃ / point)Temps de montée en température-55 ~+125 ℃Dans les 18 minutes (10℃/minute)Le volume interne de l'utérus a été testé306LMéthode des pouces de la salle d'essai (largeur, profondeur et hauteur)630 mm × 540 mm × 900 mmMéthode en pouces du produit (largeur, profondeur et hauteur)1 100 mm × 1 960 mm × 1 900 mmFabriquer le matérielTenue externePanneau de contrôle de la salle d'essaisalle des machinesLa plaque d'acier interductile à froid est gris foncéÀ l'intérieurPlaque en acier inoxydable (SUS304,2B polie)Matériau thermique briséSalle d'essaisRésine synthétique dureporteCoton mousse de résine synthétique dure, coton de verreProjetTaperSérieEXTDispositif de déshumidification par refroidissementMéthode de refroidissement Mode de retrait et de congélation de section mécanique et mode de congélation binaireFluide de refroidissement ; liquide de refroidissement Côté monosegmentR404ACôté binaire haute température/basse températureR404A/R23Refroidissement et déshumidificateurType de dissipateur thermique mixte multicanalLe condenseur(refroidi par eau)CalorificateurFormulaireÉlément chauffant en alliage nickel-chrome résistant à la chaleurVentilateurFormulaireRemuer le ventilateurContrôleurLa température est réglée-72,0 ~ + 152,0 ℃Mise à l'heure Fanny0 ~ 999 Temps 59 minutes (formule) 0 ~ 20000 Temps 59 minutes (formule formule)Définir l'énergie de décompositionLa température était de 0,1 ℃ pendant 1 minIndiquer la précisionTempérature ± 0,8 ℃ (typ.), temps ± 100 PPMType de vacancesValeur ou programmeNuméro d'étape20 étapes / 1 programmeLe nombre de procéduresLe nombre maximum de programmes de force entrants (RAM) est de 32 programmesLe nombre maximum de programmes ROM internes est de 13 programmes式Numéro aller-retourMax. 98, ou illimitéNombre de répétitions aller-retourMaximum 3 foisDéplacer la finPt 100Ω (à 0 ℃), qualité (JIS C 1604-1997)Action de contrôleLors du fractionnement de l'action PIDFonction endovirusFonction de livraison anticipée, fonction de veille, fonction de maintenance de la valeur de réglage, fonction de protection contre les pannes de courant,Fonction de sélection d'action de puissance, fonction de maintenance, fonction de transport aller-retour,Fonction de livraison de temps, fonction de sortie de signal horaire, fonction de prévention de surchauffe et de refroidissement excessif,Fonction de représentation anormale, fonction de sortie d'alarme externe, fonction de représentation de paradigme de réglage,Fonction de sélection du type de transport, le temps de calcul représente la fonction, la fonction de lampe à fenteProjetTaperSérieEXHPanneau de contrôleMachine d'équipementPanneau de commande LCD (type panneau de contacts),Représente la lampe (alimentation, transport, anormal), borne d'alimentation de test, borne d'alarme externe,Borne de sortie du signal horaire, connecteur du cordon d'alimentation Dispositif de protection Cycle de réfrigérationDispositif de protection contre les surcharges, dispositif de blocage élevéCalorificateurDispositif de protection contre l'augmentation de la température, fusible de températureVentilateurDispositif de protection contre les surchargesPanneau de contrôleDisjoncteur de fuite pour alimentation électrique, fusible (chauffage,),Fusible (pour boucle de fonctionnement), dispositif de protection contre l'échauffement (pour tests),Dispositif de prévention du surrefroidissement et de l'augmentation de la température (matériel de test, dans un micro-ordinateur)Le paiement appartient au produitMatériel de test versé par * 8Hangar inox (2), hangar (4)FusibleFusibles de protection de boucle de fonctionnement (2)Spécification de fonctionnement(1) AutreBolus (Trou de câble : 1)Produits d'équipementAdventiceVerre résistant à la chaleur : 270 mm : 190 mm1 Trou de câbleDiamètre intérieur de 50 mm1 Le creux à l'intérieur de la lampeBoule chaude blanche AC100V 15W1 Roue 6 Ajustement horizontal 6 Caractéristiques de l'électrovirusL'alimentation est * 5.1 CA Triophasé 380V 50HzCourant de charge maximal60ACapacité du disjoncteur de fuite pour l'alimentation électrique80ACourant sensoriel 30mAÉpaisseur de distribution de puissance60 mm2Tuyau d'isolation en caoutchoucGrossièreté du fil de terre14 mm2Eau de refroidissement à * 5,3Rendement en eau5 000 L/h (lorsque la température d'entrée de l'eau de refroidissement est de 32 ℃)pression de l'eau0,1 ~ 0,5MPaDiamètre du tuyau latéral de l'appareilPT1 1/4 TubesTuyau de vidange * 5.4TP1/2 Poids du produit
AEC-Q100 - Mécanisme de défaillance basé sur la certification des tests de résistance des circuits intégrésAvec les progrès de la technologie électronique automobile, il existe de nombreux systèmes de contrôle de gestion de données complexes dans les voitures d'aujourd'hui, et via de nombreux circuits indépendants, pour transmettre les signaux requis entre chaque module, le système à l'intérieur de la voiture ressemble à « l'architecture maître-esclave » de le réseau informatique, dans l'unité de commande principale et chaque module périphérique, les pièces électroniques automobiles sont divisées en trois catégories. Y compris les circuits intégrés, les semi-conducteurs discrets et les composants passifs, trois catégories, afin de garantir que ces composants électroniques automobiles répondent aux normes les plus élevées de l'anquan automobile, l'American Automotive Electronics Association (AEC, The Automotive Electronics Council est un ensemble de normes [AEC-Q100] conçu pour les pièces actives [microcontrôleurs et circuits intégrés...] et [[AEC-Q200] conçu pour les composants passifs, qui spécifie la qualité et la fiabilité du produit qui doivent être atteintes pour les pièces passives. Aec-q100 est la norme de test de fiabilité des véhicules formulée. par l'organisation AEC, qui constitue une entrée importante pour les fabricants de 3C et de circuits intégrés dans le module d'usine automobile internationale, et également une technologie importante pour améliorer la qualité de fiabilité des circuits intégrés de Taiwan. De plus, l'usine automobile internationale a passé la norme anquan (ISO). -26262). AEC-Q100 est l’exigence de base pour réussir cette norme.Liste des pièces électroniques automobiles requises pour passer l'AECQ-100 :Mémoire jetable automobile, régulateur abaisseur d'alimentation, photocoupleur automobile, capteur accéléromètre à trois axes, dispositif vidéo Jiema, redresseur, capteur de lumière ambiante, mémoire ferroélectrique non volatile, circuit intégré de gestion de l'alimentation, mémoire flash intégrée, régulateur DC/DC, véhicule dispositif de communication réseau de jauge, circuit intégré de pilote LCD, amplificateur différentiel d'alimentation unique, interrupteur de proximité capacitif désactivé, pilote de LED haute luminosité, commutateur asynchrone, circuit intégré 600 V, circuit intégré GPS, puce de système avancé d'aide à la conduite ADAS, récepteur GNSS, amplificateur frontal GNSS. .. Attendons.Catégories et tests AEC-Q100 :Description : Spécification AEC-Q100 7 grandes catégories, un total de 41 testsGroupe A- TESTS DE STRESS ENVIRONNEMENT ACCÉLÉRÉS se compose de 6 tests : PC, THB, HAST, AC, UHST, TH, TC, PTC, HTSLGroupe B - TESTS DE SIMULATION ACCÉLÉRÉS À VIE se compose de trois tests : HTOL, ELFR et EDRLES TESTS D'INTÉGRITÉ DE L'ASSEMBLAGE DU COLIS se composent de 6 tests : WBS, WBP, SD, PD, SBS, LIGroupe D- Le test de FIABILITÉ DE FABRICATION DES MATRICES se compose de 5 TESTS : EM, TDDB, HCI, NBTI, SMLe groupe TESTS DE VÉRIFICATION ÉLECTRIQUE se compose de 11 tests, dont TEST, FG, HBM/MM, CDM, LU, ED, CHAR, GL, EMC, SC et SER.TESTS DE DÉPISTAGE des défauts F du cluster : 11 tests, dont : PAT, SBALes TESTS D'INTÉGRITÉ DU PACKAGE CAVITY se composent de 8 tests, dont : MS, VFV, CA, GFL, DROP, LT, DS, IWV.Brève description des éléments de test :Climatisation : AutocuiseurCA : accélération constanteCDM : mode appareil chargé par décharge électrostatiqueCHAR : indique la description de la fonctionnalitéDROP : le colis tombeDS : test de cisaillement des copeauxED : Distribution électriqueEDR : durabilité du stockage non sujette aux pannes, conservation des données, durée de vieELFR : taux d’échec en début de vieEM : électromigrationCEM : Compatibilité électromagnétiqueFG : niveau de défautGFL : test de fuite d'air grossier/finGL : Fuite de grille causée par un effet thermoélectriqueHBM : indique le mode humain de décharge électrostatiqueHTSL : durée de conservation à haute températureHTOL : durée de vie à haute températureHCL : effet d'injection de porteur chaudIWV : Test hygroscopique interneLI : intégrité des brochesLT : Test de couple du couvercleLU : effet de verrouillageMM : indique le mode mécanique de décharge électrostatiqueMS : Choc mécaniqueNBTI : instabilité de température à biais richePAT : test de moyenne de processusPC : prétraitementPD : taille physiquePTC : cycle de température de puissanceSBA : Analyse statistique du rendementSBS : cisaillement de billes d'étainSC : fonction de court-circuitSD : soudabilitéSER : taux d'erreur logicielSM : Migration des contraintesTC : cycle de températureTDDB : Temps de claquage diélectriqueTEST : Paramètres de fonction avant et après stress testTH : humidité et chaleur sans parti prisTHB, HAST : tests de température, d'humidité ou de stress hautement accélérés avec biais appliquésUHST : test de résistance à haute accélération sans biaisVFV : vibration aléatoireWBS : coupe au fil de soudureWBP : tension du fil de soudureConditions de test de température et d'humidité finition :THB (température et humidité avec polarisation appliquée, selon JESD22 A101) : 85℃/85%R.H./1000h/biasHAST (test de contrainte hautement accéléré selon JESD22 A110) : 130℃/85%R.H./96h/bias, 110℃/85%R.H./264h/biasAutocuiseur AC, selon JEDS22-A102 : 121 ℃/100%R.H./96hUHST Test de contrainte à haute accélération sans biais, selon JEDS22-A118, équipement : HAST-S) : 110℃/85%R.H./264hTH chaleur humide sans biais, selon JEDS22-A101, équipement : THS) : 85℃/85%R.H./1000hTC(cycle de température, selon JEDS22-A104, équipement : TSK, TC) :Niveau 0 : -50℃←→150℃/2000cyclesNiveau 1 : -50℃←→150℃/1000cyclesNiveau 2 : -50℃←→150℃/500cyclesNiveau 3 : -50℃←→125℃/500cyclesNiveau 4 : -10℃←→105℃/500cyclesPTC (cycle de température de puissance, selon JEDS22-A105, équipement : TSK) :Niveau 0 : -40℃←→150℃/1000cyclesNiveau 1 : -65℃←→125℃/1000cyclesNiveau 2 à 4 : -65℃←→105℃/500cyclesHTSL(Durée de conservation haute température, JEDS22-A103, appareil : FOUR) :Pièces d'emballage en plastique : Grade 0 : 150 ℃/2000hCatégorie 1 : 150 ℃/1000hGrade 2 à 4 : 125 ℃/1000h ou 150℃/5000hPièces d'emballage en céramique : 200 ℃/72hHTOL (Durée de vie haute température, JEDS22-A108, équipement : FOUR) :Catégorie 0 : 150 ℃/1000hClasse 1 : 150℃/408h ou 125℃/1000hNiveau 2 : 125 ℃/408h ou 105 ℃/1000hNiveau 3 : 105 ℃/408h ou 85 ℃/1000hClasse 4 :90℃/408h ou 70℃/1000h ELFR (taux d'échec en début de vie, AEC-Q100-008) : Les appareils qui réussissent ce test de résistance peuvent être utilisés pour d'autres tests de résistance, les données générales peuvent être utilisées et les tests avant et après ELFR sont effectués dans des conditions de température douces et élevées.
Équipement de test environnemental de fiabilité combiné à des applications de contrôle et de détection de température multi-pistes
L'équipement de test environnemental comprend une chambre d'essai à température et humidité constantes, une chambre d'essai de choc chaud et froid, une chambre d'essai de cycle de température, pas de four à vent... Ces équipements de test sont tous dans l'environnement simulé de la température, de l'impact de l'humidité sur le produit, pour le savoir. la conception, la production, le stockage, le transport et le processus d'utilisation peuvent apparaître des défauts du produit, auparavant seulement la température de l'air de la zone de test simulée, mais dans les nouvelles normes internationales et les nouvelles conditions de test de l'usine internationale, le début des exigences basées sur la température de l'air ne l'est pas. C'est la température de surface du produit testé. De plus, la température de surface doit également être mesurée et enregistrée de manière synchrone pendant le processus de test pour une analyse post-test. L'équipement d'essai environnemental pertinent doit être combiné avec le contrôle de la température de surface et l'application de la mesure de la température de surface est résumée comme suit.
Application de détection de température de table d'essai de chambre d'essai de température et d'humidité constantes :
Description : Chambre de test de température et d'humidité constantes dans le processus de test, combinée à une détection de température multipiste, une température et une humidité élevées, une condensation (condensation), une température et une humidité combinées, un cycle de température lent... Pendant le processus de test, le capteur est apposé sur la surface du produit testé, qui peut être utilisé pour mesurer la température de surface ou la température interne du produit testé. Grâce à ce module de détection de température multipiste, les conditions définies, la température et l'humidité réelles, la température de surface du produit testé, ainsi que les mêmes mesures et enregistrements peuvent être intégrés dans un fichier de courbe synchrone pour un stockage et une analyse ultérieurs.
Applications de contrôle et de détection de la température de surface de la chambre d'essai de choc thermique : [temps de séjour basé sur le contrôle de la température de surface], [enregistrement de mesure de la température de surface du processus de choc thermique]
Description : Le capteur de température à 8 rails est fixé à la surface du produit testé et appliqué au processus de choc thermique. Le temps de séjour peut être décompté en fonction de l'arrivée de la température de surface. Pendant le processus d'impact, les conditions de prise, la température de test, la température de surface du produit de test, ainsi que les mêmes mesures et enregistrements peuvent être intégrés dans une courbe synchrone.
Application de contrôle et de détection de la température de surface de la chambre d'essai de cycle de température : [La variabilité de la température du cycle de température et le temps de séjour sont contrôlés en fonction de la température de surface du produit testé]
Description : Le test de cycle de température est différent du test de choc thermique. Le test de choc thermique utilise l'énergie maximale du système pour effectuer des changements de température entre des températures élevées et basses, et son taux de changement de température peut atteindre 30 ~ 40 ℃/min. Le test du cycle de température nécessite un processus de changements de température élevés et faibles, et sa variabilité de température peut être réglée et contrôlée. Cependant, les nouvelles spécifications et les conditions de test des fabricants internationaux ont commencé à exiger que la variabilité de la température se réfère à la température de surface du produit testé, et non à la température de l'air, et au contrôle actuel de la variabilité de la température des spécifications du cycle de température. Selon les spécifications de surface du produit testé sont [JEDEC-22A-104F, IEC60749-25, IPC9701, ISO16750, AEC-Q100, LV124, GMW3172]... De plus, le temps de séjour des températures élevées et basses peut également être basé sur la surface d’essai, plutôt que la température de l’air.
Applications de contrôle et de détection de la température de surface de la chambre d'essai de dépistage des contraintes cycliques en température :
Instructions : Machine d'essai de dépistage des contraintes du cycle de température, combinée à une mesure de température multi-rails, dans la variabilité de la température du dépistage des contraintes, vous pouvez choisir d'utiliser [température de l'air] ou [température de la surface du produit testé] pour contrôler la variabilité de la température, en plus, dans le processus résident à haute et basse température, le temps réciproque peut également être contrôlé en fonction de la surface du produit testé. Conformément aux spécifications pertinentes (GJB1032, IEST) et aux exigences des organisations internationales, selon la définition de GJB1032 dans le temps de séjour et le point de mesure de la température de dépistage des contraintes, 1. Le nombre de thermocouples fixés sur le produit ne doit pas être inférieur à 3, et le point de mesure de la température du système de refroidissement ne doit pas être inférieur à 6, 2. Assurez-vous que la température des 2/3 des thermocouples sur le produit est réglée à ± 10 ℃, en outre, conformément aux exigences de l'IEST (International Association for Environmental Science and Technology), le temps de séjour doit atteindre le temps de stabilisation de la température plus 5 minutes ou le temps de test de performance.
Application de détection de température de surface sans four à air (chambre d'essai à convection naturelle) :
Description : Grâce à la combinaison d'un four sans vent (chambre d'essai à convection naturelle) et d'un module de détection de température multipiste, l'environnement de température sans ventilateur (convection naturelle) est généré et le test de détection de température pertinent est intégré. Cette solution peut être appliquée au test de température ambiante réelle des produits électroniques (tels que : serveur Cloud, 5G, intérieur de véhicule électrique, intérieur sans environnement de climatisation, onduleur solaire, grand téléviseur LCD, partage Internet domestique, bureau 3C, ordinateur portable, ordinateur de bureau. , console de jeux....... Etc.).
Test de fiabilité de l'onduleur
Test de fiabilité de l'onduleur également connu sous le nom de convertisseur de tension, sa fonction est de convertir la basse tension CC en haute tension CA, certains équipements électroniques doivent être alimentés par une alimentation CA, mais nous fournissons une alimentation CC, à ce moment, vous devez utiliser l'onduleur, directement courant en courant alternatif pour piloter les composants électroniques. Test de fiabilité de l'onduleur également connu sous le nom de convertisseur de tension, sa fonction est de convertir la basse tension CC en haute tension CA, certains équipements électroniques doivent être alimentés par une alimentation CA, mais nous fournissons une alimentation CC, à ce moment, vous devez utiliser l'onduleur, directement courant en courant alternatif pour piloter les composants électroniques.
Conditions de test pertinentes :
Article
température
temps
autre
Test initial à température normale
25 ℃
TEMPS≥2 heures
-
Test initial à basse température
0 ℃ ou -5 °C
TEMPS≥2 heures
-
Test initial à haute température
60 ℃
TEMPS≥2 heures
-
Test à haute température et humidité élevée
40℃/95% HR
240 heures
-
Test de stockage à haute température
70 ℃
TEMPS≥96 heures ou 240 heures
-
Test de stockage à basse température -1
-20°C
TEMPS≥96 heures
-
Test de stockage à basse température -2
-40 ℃
240 heures
-
Test de stockage à haute température et humidité élevée
40℃/90% HR
TEMPS≥96 heures
-
Test de cycle de température
-20 ℃ ~ 70 ℃
5 cycles
Température ambiante ↓-20 ℃ (4 heures)↓ Température ambiante (90 % HR.4 heures)↓70°C (4 heures)↓ Température ambiante (4 heures)
Test de charge à haute température
55 ℃
charge équivalente, 1 000 heures
-
Test de vie
40°C
MTBF≥40 000 heures
-
test marche/arrêt (cycle d'alimentation)
-
-
1 min : marche, 1 min : arrêt, 5 000 cycles en utilisant une charge équivalente
Essai de vibrations
-
-
Accélération 3q, fréquence 10 ~ 55 Hz, X, Y, Z trois directions 10 minutes chacune, un total de 30 minutes
Essai d'impact
-
-
Accélération de 80 g, 10 ms à chaque fois, trois fois dans les directions X, Y, Z
Remarque 1 : Le module testé doit être placé à une température normale (15 ~ 35 °C, 45 ~ 65 % HR) pendant une heure avant le test.
Équipement applicable :
1. Chambre d'essai à haute et basse température
2. Chambre d'essai à haute température et humidité élevée
3. Chambre d'essai de cycle de température rapide
Norme de test CEI 61646 pour les modules photoélectriques solaires à couches mincesGrâce à la mesure de diagnostic, à la mesure électrique, au test d'irradiation, au test environnemental, au test mécanique, cinq types de modes de test et d'inspection, confirmez les exigences de confirmation de conception et d'approbation de forme de l'énergie solaire à couche mince et confirmez que le module peut fonctionner dans l'environnement climatique général. requis par le cahier des charges depuis longtemps.Procédure d'inspection visuelle CEI 61646-10.1Objectif : Vérifier les éventuels défauts visuels du module.Performance au STC selon les conditions de test standard CEI 61646-10.2Objectif : à l'aide de la lumière naturelle ou d'un simulateur de classe A, dans des conditions de test standard (température de la batterie : 25 ± 2 ℃, irradiance : 1 000 wm^-2, distribution standard de l'irradiation du spectre solaire conformément à la norme IEC891), tester les performances électriques du module avec charge. changement.Test d'isolation CEI 61646-10.3Objectif : Tester s'il y a une bonne isolation entre les pièces conductrices de courant et le châssis du moduleCEI 61646-10.4 Mesure des coefficients de températureObjectif : tester le coefficient de température actuel et le coefficient de température de tension dans le test du module. Le coefficient de température mesuré n'est valable que pour l'irradiation utilisée dans l'essai. Pour les modules linéaires, elle est valable à ±30% de cette irradiation. Cette procédure s'ajoute à la CEI891, qui spécifie la mesure de ces coefficients à partir de cellules individuelles dans un lot représentatif. Le coefficient de température du module de cellule solaire à couche mince dépend du processus de traitement thermique du module concerné. Lorsque le coefficient de température entre en jeu, il convient d'indiquer les conditions de l'essai thermique et les résultats d'irradiation du procédé.CEI 61646-10.5 Mesure de la température nominale de fonctionnement de la cellule (NOCT)Objectif : Tester le NOCT du modulePerformances CEI 61646-10.6 à NOCTObjectif : Lorsque la température et l'irradiance nominales de la batterie sont de 800 Wm^-2, dans les conditions standard de distribution de l'irradiation du spectre solaire, les performances électriques du module varient en fonction de la charge.Performances CEI 61646-10.7 à faible éclairementObjectif : Déterminer les performances électriques des modules sous charge sous lumière naturelle ou simulateur de classe A à 25 ℃ et 200 Wm^-2 (mesurés avec une cellule de référence appropriée).Test d'exposition extérieure CEI 61646-10.8Objectif : Faire une évaluation inconnue de la résistance du module à l'exposition aux conditions extérieures et montrer les éventuels effets de dégradation qui n'ont pas pu être détectés par l'expérience ou le test.Test de point chaud CEI 61646-10.9Objectif : Déterminer la capacité du module à résister aux effets thermiques, tels que le vieillissement des matériaux d'emballage, la fissuration de la batterie, une défaillance de connexion interne, l'ombrage local ou les bords tachés peuvent provoquer de tels défauts.Test UV CEI 61646-10.10 (test UV)Objectif : Pour confirmer la capacité du module à résister aux rayonnements ultraviolets (UV), le nouveau test UV est décrit dans la norme CEI1345 et, si nécessaire, le module doit être exposé à la lumière avant d'effectuer ce test.Test de cyclage thermique IEC61646-10.11 (cyclage thermique)Objectif : Confirmer la capacité du module à résister à l'inhomogénéité thermique, à la fatigue et autres contraintes dues aux changements répétés de température. Le module doit être recuit avant de recevoir ce test. [Test pré-IV] fait référence au test après recuit, veillez à ne pas exposer le module à la lumière avant le test IV final.Exigences des tests :un. Instruments pour surveiller la continuité électrique au sein de chaque module tout au long du processus de testb. Surveiller l'intégrité de l'isolation entre l'une des extrémités encastrées de chaque module et le cadre ou le cadre de supportc. Enregistrez la température du module tout au long du test et surveillez tout circuit ouvert ou panne de terre pouvant survenir (pas de circuit ouvert intermittent ou de panne de terre pendant le test).d.La résistance d'isolement doit répondre aux mêmes exigences que la mesure initialeCEI 61646-10.12 Test de cycle de gel d'humiditéObjectif : Pour tester la résistance du module à l'influence de la température inférieure à zéro ultérieure sous une température et une humidité élevées, il ne s'agit pas d'un test de choc thermique, avant de recevoir le test, le module doit être recuit et soumis à un test de cycle thermique, [ [Test pré-IV] fait référence au cycle thermique après le test, veillez à ne pas exposer le module à la lumière avant le test IV final.Exigences des tests :un. Instruments pour surveiller la continuité électrique au sein de chaque module tout au long du processus de testb. Surveiller l'intégrité de l'isolation entre l'une des extrémités encastrées de chaque module et le cadre ou le cadre de supportc. Enregistrez la température du module tout au long du test et surveillez tout circuit ouvert ou panne de terre pouvant survenir (pas de circuit ouvert intermittent ou de panne de terre pendant le test).d. La résistance d'isolement doit répondre aux mêmes exigences que la mesure initialeCEI 61646-10.13 Test de chaleur humide (chaleur humide)Objectif : Tester la capacité du module à résister à long terme aux infiltrations d’humiditéExigences de test : La résistance d'isolement doit répondre aux mêmes exigences que la mesure initialeCEI 61646-10.14 Robustesse des terminaisonsObjectif : Déterminer si la fixation entre l'extrémité de connexion et l'extrémité de connexion au corps du module peut résister à la force lors d'une installation et d'un fonctionnement normaux.Test de torsion CEI 61646-10.15Objectif : Détecter d'éventuels problèmes causés par l'installation de modules sur une structure imparfaiteCEI 61646-10.16 Essai de charge mécaniqueObjectif : Le but de ce test est de déterminer la capacité du module à résister au vent, à la neige, à la glace ou aux charges statiques.Test de grêle CEI 61646-10.17Objectif : Vérifier la résistance aux chocs du module à la grêleTest d'immersion de lumière CEI 61646-10.18Objectif : Stabiliser les propriétés électriques des modules à couches minces en simulant l'irradiation solaireEssais de recuit CEI 61646-10.19 (recuit)Objectif : Le module film est recuit avant le test de vérification. S'il n'est pas recuit, l'échauffement lors de la procédure de test ultérieure peut masquer l'atténuation provoquée par d'autres causes.Test de courant de fuite humide CEI 61646-10.20Objectif : évaluer l'isolation du module dans des conditions de fonctionnement humides et vérifier que l'humidité provenant de la pluie, du brouillard, de la rosée ou de la fonte des neiges ne pénètre pas dans les parties actives du circuit du module, ce qui pourrait provoquer de la corrosion, une défaillance de la terre ou des risques pour la sécurité.
Test de cycle de température IEEE1513, test de congélation par humidité et test de thermo-humidité 1Parmi les exigences de test de fiabilité environnementale des cellules, du récepteur et du module de cellules solaires concentrées, il y a leurs propres méthodes de test et conditions de test en matière de test de cycle de température, de test de gel d'humidité et de test d'humidité thermique, et il existe également des différences dans la confirmation de qualité après l'épreuve. Par conséquent, IEEE1513 comporte trois tests sur le test de cycle de température, le test de gel d'humidité et le test de thermo-humidité dans la spécification, et ses différences et méthodes de test sont triées pour la référence de chacun.Source de référence : norme IEEE 1513-2001Test de cycle thermique IEEE1513-5.7 Test de cycle thermique IEEE1513-5.7Objectif : Déterminer si l'extrémité réceptrice peut résister correctement à la défaillance provoquée par la différence de dilatation thermique entre les pièces et le matériau du joint, en particulier la qualité du joint de soudure et du boîtier. Contexte : Les tests de cycles de température des cellules solaires concentrées révèlent une fatigue de soudage des dissipateurs thermiques en cuivre et nécessitent une transmission ultrasonique complète pour détecter la croissance de fissures dans les cellules (SAND92-0958 [B5]).La propagation des fissures est fonction du numéro de cycle de température, du joint de soudure complet initial, du type de joint de soudure, entre la batterie et le radiateur en raison du coefficient de dilatation thermique et des paramètres du cycle de température, après le test du cycle thermique pour vérifier la structure du récepteur du qualité des matériaux d'emballage et d'isolation. Il existe deux plans de test pour le programme, testés comme suit :Programme A et programme BProcédure A : Test de la résistance du récepteur à une contrainte thermique provoquée par une différence de dilatation thermiqueProcédure B : Cycle de température avant test de congélation par humiditéAvant le prétraitement, il est souligné que les défauts initiaux du matériau récepteur sont provoqués par une véritable congélation humide. Afin de s'adapter aux différentes conceptions d'énergie solaire concentrée, les tests de cycle de température du programme A et du programme B peuvent être vérifiés, qui sont répertoriés dans le tableau 1 et le tableau 2.1. Ces récepteurs sont conçus avec des cellules solaires directement connectées à des radiateurs en cuivre, et les conditions requises sont répertoriées dans le tableau de la première ligne.2. Cela garantira que les mécanismes de défaillance potentiels, pouvant conduire à des défauts survenant au cours du processus de développement, soient découverts. Ces conceptions adoptent différentes méthodes et peuvent utiliser des conditions alternatives, comme indiqué dans le tableau, pour décoller le radiateur de la batterie.Le tableau 3 montre que la partie réceptrice exécute un cycle de température du programme B avant l'alternative.Étant donné que le programme B teste principalement d'autres matériaux à la réception, des alternatives sont proposées à toutes les conceptions.Tableau 1 - Test de procédure de cycle de température pour les récepteursProgramme A- Cycle thermiqueOptionTempérature maximaleNombre total de cyclesApplication actuelleConception requiseTCR-A110℃250NoLa batterie est soudée directement sur le radiateur en cuivreTCR-B90 ℃500NoAutres dossiers de conceptionTCR-C90 ℃250I(appliqué) = IscAutres dossiers de conceptionTableau 2 - Test de procédure de cycle de température du récepteurProcédure B- Cycle de température avant test de congélation humideOptionTempérature maximaleNombre total de cyclesApplication actuelleConception requiseHFR-A 110℃100NoDocumentation de toutes les conceptions HFR-B 90 ℃200NoDocumentation de toutes les conceptions HFR-C 90 ℃100I(appliqué) = IscDocumentation de toutes les conceptions Procédure : L'extrémité réceptrice sera soumise à un cycle de température compris entre -40 °C et la température maximale (en suivant la procédure de test du tableau 1 et du tableau 2), le cycle de test peut être placé dans une ou deux boîtes de chambre d'essai de choc thermique de gaz, le cycle de choc liquide ne doit pas être utilisé, le temps de séjour est d'au moins 10 minutes et les températures haute et basse doivent être conformes aux exigences de ± 5 °C. La fréquence des cycles ne doit pas être supérieure à 24 cycles par jour et pas inférieure à 4 cycles par jour, la fréquence recommandée est de 18 fois par jour.Le nombre de cycles thermiques et la température maximale requise pour les deux échantillons, se référer au Tableau 3 (Procédure B de la Figure 1), après quoi une inspection visuelle et un test des caractéristiques électriques seront effectués (voir 5.1 et 5.2). Ces échantillons seront soumis à un essai de congélation humide, conformément à 5.8, et un récepteur plus grand se référera à 4.1.1 (cette procédure est illustrée à la Figure 2).Contexte : Le but du test de cycle de température est d'accélérer le test qui apparaîtra dans le mécanisme de défaillance à court terme, avant la détection d'une défaillance du matériel solaire à concentration. Par conséquent, le test inclut la possibilité de voir une large différence de température au-delà du module. plage, la limite supérieure du cycle de température de 60 ° C est basée sur la température de ramollissement de nombreuses lentilles acryliques du module, pour d'autres modèles, la température du module. La limite supérieure du cycle de température est de 90°C (voir tableau 3)Tableau 3- Liste des conditions de test pour les cycles de température des modulesProcédure B Prétraitement du cycle de température avant l'essai de congélation humideOptionTempérature maximaleNombre total de cyclesApplication actuelleConception requiseMTC-A 90 ℃50NoDocumentation de toutes les conceptions TEM-B 60 ℃200NoUne conception de module de lentille en plastique peut être requise
Test de cycle de température IEEE1513 et test de congélation humide, test de chaleur et d'humidité 2Mesures:Les deux modules effectueront 200 cycles de température entre -40 °C et 60 °C ou 50 cycles de température entre -40 °C et 90 °C, comme spécifié dans la norme ASTM E1171-99.Note:ASTM E1171-01 : Méthode de test du module photoélectrique à la température et à l'humidité de la boucleL'humidité relative n'a pas besoin d'être contrôlée.La variation de température ne doit pas dépasser 100 ℃/heure.Le temps de séjour doit être d'au moins 10 minutes et les températures haute et basse doivent être dans les limites de ± 5 ℃Exigences:un. Le module sera inspecté pour déceler tout dommage ou dégradation évident après le test de cycle.b. Le module ne doit présenter aucune fissure ou déformation et le matériau d'étanchéité ne doit pas se délaminer.c. S'il y a un test sélectif de la fonction électrique, la puissance de sortie doit être de 90 % ou plus dans les mêmes conditions que de nombreux paramètres de base d'origine.Ajouté :IEEE1513-4.1.1 Représentant du module ou échantillon de test du récepteur, si la taille d'un module ou d'un récepteur complet est trop grande pour tenir dans une chambre d'essai environnemental existante, le représentant du module ou l'échantillon de test du récepteur peut être remplacé par un module ou un récepteur pleine taille.Ces échantillons de test doivent être spécialement assemblés avec un récepteur de remplacement, comme s'ils contenaient une chaîne de cellules connectées à un récepteur de taille normale, la chaîne de batteries doit être longue et inclure au moins deux diodes de dérivation, mais dans tous les cas, trois cellules sont relativement peu nombreuses. , qui résume l'inclusion des liens avec le terminal récepteur de remplacement, doit être le même que le module complet.Le récepteur de remplacement doit inclure des composants représentatifs des autres modules, y compris l'objectif/boîtier d'objectif, le récepteur/boîtier du récepteur, le segment arrière/l'objectif du segment arrière, le boîtier et le connecteur du récepteur. Les procédures A, B et C seront testées.Deux modules pleine grandeur doivent être utilisés pour la procédure de test d’exposition extérieure D.IEEE1513-5.8 Test de cycle de gel d'humidité Test de cycle de gel d'humiditéRécepteurBut:Déterminer si la pièce réceptrice est suffisante pour résister aux dommages dus à la corrosion et à la capacité de l'expansion de l'humidité à dilater les molécules du matériau. De plus, la vapeur d'eau gelée constitue la contrainte permettant de déterminer la cause de la défaillance.Procédure:Les échantillons après les cycles de température seront testés conformément au tableau 3 et seront soumis à un test de congélation humide à 85 ℃ et -40 ℃, une humidité de 85 % et 20 cycles. Selon ASTM E1171-99, l'extrémité réceptrice avec un grand volume doit se référer à 4.1.1Exigences:La partie réceptrice doit satisfaire aux exigences de 5.7. Sortez du réservoir environnemental dans les 2 à 4 heures et la partie réceptrice doit répondre aux exigences du test de fuite d'isolation haute tension (voir 5.4).moduleBut:Déterminer si le module a une capacité suffisante pour résister à la corrosion nocive ou à l'élargissement des différences de liaison des matériauxProcédure : Les deux modules seront soumis à des tests de congélation humide pendant 20 cycles, 4 ou 10 cycles à 85°C comme indiqué dans la norme ASTM E1171-99.Veuillez noter que la température maximale de 60 °C est inférieure à la section d'essai de congélation humide à l'extrémité de réception.Un test complet d'isolation haute tension (voir 5.4) sera effectué après un cycle de deux à quatre heures. Après l'essai d'isolation haute tension, l'essai de performances électriques décrit en 5.2 sera effectué. Dans les grands modules peuvent également être complétés, voir 4.1.1.Exigences:un. Le module vérifiera tout dommage ou dégradation évident après le test et l'enregistrera.b. Le module ne doit présenter aucune fissure, déformation ou corrosion grave. Il ne doit y avoir aucune couche de matériau d’étanchéité.c. Le module doit réussir le test d'isolation haute tension comme décrit dans IEEE1513-5.4.S'il y a un test sélectif de la fonction électrique, la puissance de sortie peut atteindre 90 % ou plus dans les mêmes conditions de nombreux paramètres de base d'origine.IEEE1513-5.10 Test de chaleur humide IEEE1513-5.10 Test de chaleur humideObjectif: Évaluer l'effet et la capacité de l'extrémité réceptrice à résister à l'infiltration d'humidité à long terme.Procédure: Le récepteur de test est testé dans une chambre de test environnemental avec une humidité relative de 85 % ± 5 % et 85 °C ± 2 °C comme décrit dans la norme ASTM E1171-99. Ce test doit être effectué en 1 000 heures, mais 60 heures supplémentaires peuvent être ajoutées pour effectuer un test de fuite d'isolation haute tension. La partie réceptrice peut être utilisée pour les tests.Exigences: L'extrémité réceptrice doit quitter la chambre d'essai de chaleur humide pendant 2 à 4 heures pour réussir le test de fuite d'isolation haute tension (voir 5.4) et réussir l'inspection visuelle (voir 5.1). S'il y a un test sélectif de la fonction électrique, la puissance de sortie doit être de 90 % ou plus dans les mêmes conditions que de nombreux paramètres de base d'origine.Procédures de test et d'inspection du module IEEE1513IEEE1513-5.1 Procédure d'inspection visuelleObjectif : Établir l'état visuel actuel afin que le destinataire puisse comparer s'il réussit chaque test et garantir qu'il répond aux exigences pour des tests ultérieurs.Test de performances électriques IEEE1513-5.2Objectif : Décrire les caractéristiques électriques du module de test et du récepteur et déterminer leur puissance crête de sortie.Test de continuité de terre IEEE1513-5.3Objectif : Vérifier la continuité électrique entre tous les composants conducteurs exposés et le module de mise à la terre.IEEE1513-5.4 Test d'isolation électrique (hi-po sec)Objectif : Garantir que l'isolation électrique entre le module de circuit et toute pièce conductrice de contact externe est suffisante pour empêcher la corrosion et garantir la sécurité des travailleurs.IEEE1513-5.5 Test de résistance à l'isolation humideObjectif : Vérifier que l'humidité ne peut pas pénétrer dans la partie électroniquement active de l'extrémité de réception, où elle pourrait provoquer de la corrosion, une défaillance de la terre ou identifier des risques pour la sécurité humaine.Test de pulvérisation d'eau IEEE1513-5.6Objectif : Le test de résistance à l'humidité sur le terrain (FWRT) évalue l'isolation électrique des modules de cellules solaires en fonction des conditions de fonctionnement humides. Ce test simule de fortes pluies ou de la rosée sur sa configuration et son câblage pour vérifier que l'humidité ne pénètre pas dans le circuit du réseau utilisé, ce qui pourrait augmenter la corrosivité, provoquer des pannes de terre et créer des risques de sécurité électrique pour le personnel ou l'équipement.Test de cycle thermique IEEE1513-5.7 (Test de cycle thermique)Objectif : Déterminer si l'extrémité réceptrice peut résister correctement à la défaillance causée par la différence de dilatation thermique des pièces et des matériaux de joint.Test de cycle de gel d'humidité IEEE1513-5.8Objectif : Déterminer si la pièce réceptrice est suffisamment résistante aux dommages causés par la corrosion et à la capacité de l'expansion de l'humidité à dilater les molécules du matériau. De plus, la vapeur d’eau gelée constitue la contrainte permettant de déterminer la cause de la défaillance.IEEE1513-5.9 Test de robustesse des terminaisonsObjectif : Pour garantir les fils et les connecteurs, appliquez des forces externes sur chaque pièce pour confirmer qu'elles sont suffisamment résistantes pour maintenir les procédures de manipulation normales.IEEE1513-5.10 Test de chaleur humide (Test de chaleur humide)Objectif : Évaluer l’effet et la capacité de l’extrémité réceptrice à résister à l’infiltration d’humidité à long terme. jeEEE1513-5.11 Essai d'impact de grêleObjectif : Déterminer si un composant, notamment le condenseur, peut survivre à la grêle. IEEE1513-5.12 Test thermique de diode de dérivation (Test thermique de diode de dérivation)Objectif : Évaluer la disponibilité d'une conception thermique suffisante et l'utilisation de diodes de dérivation avec une fiabilité relative à long terme pour limiter les effets néfastes de la diffusion du déplacement thermique des modules.Test d'endurance de point chaud IEEE1513-5.13 (test d'endurance de point chaud)Objectif : Évaluer la capacité des modules à résister aux changements de chaleur périodiques au fil du temps, généralement associés à des scénarios de défaillance tels que des puces cellulaires gravement fissurées ou mal adaptées, des défaillances de circuit ouvert en un seul point ou des ombres inégales (parties ombrées). jeEEE1513-5.14 Test d'exposition extérieure (Test d'exposition extérieure)Objectif : Afin d'évaluer de manière préliminaire la capacité du module à résister à l'exposition aux environnements extérieurs (y compris les rayons ultraviolets), l'efficacité réduite du produit peut ne pas être détectée par des tests en laboratoire.IEEE1513-5.15 Test d'endommagement du faisceau hors axeObjectif : S'assurer que toute partie du module est détruite en raison de la déviation du module du faisceau de rayonnement solaire concentré.